
Available online at www.sciencedirect.com
www.elsevier.com/locate/infsof

Information and Software Technology 50 (2008) 198–220
Scenario support for effective requirements

Thomas A. Alspaugh a,*, Annie I. Antón b

a Department of Informatics, Donald Bren School of Information and Computer Sciences, University of California, Irvine, CA, USA
b Department of Computer Science, North Carolina State University, College of Engineering, 1010 Main Campus Drive (EGRC 408),

Raleigh, NC 27695-8206, USA

Received 19 December 2005; received in revised form 14 December 2006; accepted 30 December 2006
Available online 10 January 2007
Abstract

Scenarios are widely used as requirements, and the quality of requirements is an important factor in the efficiency and success of a
development project. The informal nature of scenarios requires that analysts do much manual work with them, and much tedious and
detailed effort is needed to make a collection of scenarios well-defined, relatively complete, minimal, and coherent. We discuss six aspects
of scenarios having inherent structure on which automated support may be based, and the results of using such support. This automated
support frees analysts to concentrate on tasks requiring human intelligence, resulting in higher-quality scenarios for better system
requirements. Two studies validating the work are presented.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Requirements engineering; Scenario analysis; Scenario management
1. Introduction

Good requirements are critical: stakeholders with good
requirements are more likely to get what they want, and
developers with good requirements are more likely to finish
in a reasonable time, or finish at all. Scenarios can be good
requirements in this sense. In our experience, scenarios are
helpful to stakeholders, who can understand them and
relate them to their own experiences; they are helpful to
requirements analysts, because everyone can discuss,
negotiate, and plan using a single kind of artifact; and to
developers, for whom scenarios are concrete and specific
examples of system behaviors [16,17,20]. However, to
answer any interesting question about prose scenarios
requires careful reading, hard thought, insight, and skill.
We have found that analysts are faced with many tedious,
time-consuming tasks in making high-quality scenarios,
and need automated support for these tasks or they would
not get done – the extra time it takes to produce high-
0950-5849/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.infsof.2006.12.003

* Corresponding author. Tel.: +1 949 824 7355.
E-mail address: alspaugh@ics.uci.edu (T.A. Alspaugh).
quality scenarios is often just not available. Scenarios are
fundamentally informal, but have some structure and
consistent form and meaning that can be the basis for
automated support. Tool support for tasks that can be
automated will free analysts for other tasks that require
intelligence and judgement so they can make better scenar-
ios that will support successful development of software
that satisfies its stakeholders [5,9].

In this paper, we describe an approach for supporting
more effective work with scenarios. The guiding principle
is that although scenarios are fundamentally informal
and analysts must perform many tasks manually, there
are aspects of scenarios that have an implicit structure
and meaning and these can be the basis for automated sup-
port. Using tools to do tedious, exacting, or uninteresting
tasks helps eliminate human errors by releasing people to
concentrate on more interesting work for which human
intelligence is essential and most valuable. The result is sce-
narios that more effectively explore the space of possibili-
ties, more accurately convey the stakeholders’ and
analysts’ understanding, needs, and tradeoffs, and more
effectively highlight the requirements issues that can and

mailto:alspaugh@ics.uci.edu


T.A. Alspaugh, A.I. Antón / Information and Software Technology 50 (2008) 198–220 199
should be resolved in terms of requirements rather than
being left for developers to sort out in subsequent phases.

1.1. Scenarios as requirements

Scenarios and use cases are widely used in a number of
ways during the development process, and by a variety of
participants [2,21]. Stakeholders (customers, users, and
others affected by a system) use them to communicate what
is wanted, and developers (designers, programmers, testers,
etc.) use them to confirm their understanding [21,47,55].
They may be the primary form in which requirements are
recorded [31,37,39], a preliminary form from which special-
ists produce more refined forms such as goals and require-
ments [43], or a guide and scaffolding in a process by which
other artifacts such as goals are developed [56]. They are
used to simulate and explore a system’s use [21] or a
design’s utility [60], to present a test or validation [19],
and to derive tests from requirements [8].

Scenarios are traditionally not considered to be a form
of requirements, and many researchers and practitioners
still hold this view. However, in our experience it is becom-
ing more and more common for scenarios (or use cases
composed of scenarios) to be a significant part of a sys-
tem’s requirements, or indeed to be the system’s require-
ments. The Euronet software requirements document,
discussed below, is an example [18]. This document, enti-
tled ‘‘Software requirements specification’’, consists of a
set of use cases plus an incomplete group of screen layouts;
here the use cases are the requirements and are identified as
such. More and more industrial practitioners are develop-
ing and working from similar requirements.

In all these uses, the quality of the scenarios (or the use
cases containing them) is a key factor in the success or
failure of the system development, especially when the
scenarios are used as the system requirements. We need
to help practitioners create scenarios that are easier to
manage and analyze, and that can act as effective require-
ments that support efficient and successful software
development as well as other uses of requirements.
Although high-quality requirements do not guarantee effi-
cient development of an acceptable product, low-quality
requirements increase the likelihood that development will
be inefficient, the product will not be acceptable, or that
the development process will not produce a system at
all. One survey of some 8000 US information technology
development projects in 1994 found that a ‘‘clear state-
ment of requirements’’ was cited as the most important
factor for 13% of successful projects. Incomplete or
changing requirements were cited as the most important
factors for 24% of projects that produced unsatisfactory
systems or were late or over budget, and for 22% of
projects canceled before a system was produced [59].
The importance of requirements quality as a factor in
the success or failure of system development has been a
constant for as long as software development has been
studied [24–26,30,33–35].
1.2. Four scenario qualities

In this work, we aim for four specific qualities that
affect the efficiency and success of scenarios in system
development.
Well-definedness: Well-defined scenarios use terms that are
clearly understood by their readers, define

terms and references that may be unfamil-

iar or are unique to the system in question,

and resolve conflicts and contradictions

that must be addressed while remaining

appropriately abstracted from inessential

choices and details [9,13,27,32,65].

Coverage: A scenario collection is complete enough if

it covers stakeholders’ needs and explores

the issues and tradeoffs that if left unre-

solved would cause more delay or rework

later [16,53].

Minimality: A minimal scenario collection gives one

description for each behavior and one def-
inition for each individual concept or term.

Duplicates are eliminated and unnecessary

redundancy is reduced [16].

Coherence: The scenarios of a coherent collection sup-

port and reinforce each other. They use

the same terms to indicate intentional

reuse of concepts, and the same episodes
to indicate intentional reuse of events;

the contexts and results the scenarios cre-

ate in the world are used by other scenar-

ios; and they suggest ways of composing

scenarios in sequence to achieve larger

results than individual scenarios provide.

We have found this quality to be very

important from our experiences in work-
ing with scenarios as an industrial develop-

er or researchers working with developers,

over a period of over 20 years.

In our experience, these qualities support the resolution
of questions, tradeoffs, and conflicts in terms of require-
ments whenever that is possible, and the production of a
requirements specification that increases the chances of
successful development. Lack of any or all of these factors
causes extra and more expensive work in later phases that
potentially could have been avoided by resolving the issue
in terms of the requirements scenarios during the require-
ments phase.

1.3. Six avenues for automated support

In this paper, we present six techniques based on the
underlying structure and meaning of scenarios:



Fig. 2. Scenario structure meta-model.

200 T.A. Alspaugh, A.I. Antón / Information and Software Technology 50 (2008) 198–220
• using glossaries to define attributes and their values
(Section 3.1);

• using episodes to express dependency between scenarios
(Section 3.2);

• constructing the episode reference diagram as a means
of understanding a scenario collection and highlighting
possible problems (Section 3.3);

• identifying shared events to appropriately define epi-
sodes (Section 3.4);

• specifying the context of each scenario directly in terms
of the contexts of other scenarios (Section 3.5). and

• calculating similarity among scenarios as a basis for
establishing minimality, and a basis for searching for
specific scenarios (Section 3.6).

These techniques mutually reinforce each other, are
amenable to automated support, and form the compo-
nents of our approach for more effective work with
scenarios.

1.4. Roadmap

The remainder of the paper is organized as follows.
Section 2 defines common terminology and background
concepts. Section 3 presents the six techniques of our
approach for improving scenario quality and providing
effective automated support for work with scenarios.
Section 4 discusses our tool, SMaRT, that automates
some components of the approach. Section 5 describes
two studies showing the effectiveness of our approach:
EMS (Enhanced Messaging System), a voice mail sys-
tem used by BellSouth Telecommunications to prototype
new features for its products; and Euronet, a quote
management system developed and used internally by
Asea Brown Boveri (ABB). We give examples from
these throughout the paper. Section 6 summarizes relat-
ed work, and Section 7 discusses our results and lists
future work.

This paper amalgamates and extends work reported in
conference and workshop papers [4–6].

2. Terminology and background

2.1. Terminology

We define the following key terms.
Fig. 1. EMS scenario S38 ‘‘Caller calls E
• A scenario is a sequence of events, plus possibly some
associated attributes such as goals, requirements, view-
point, author, and pre- and postconditions [6]. Common
scenario representations can be abstracted to this form
[14]. See Fig. 1 for an example scenario.

• An event consists of an actor-action pair. An actor may
be a specific person, component, or system, or may be
an unbound role or parameter that can be filled by
any of several specific actors. The action takes place
over some time interval.

• An episode is a scenario that is used as an event of sev-
eral scenarios.

• A context is a state of the world needed by or created by
a scenario or an event. It may include the presence of
specific resources and participants, their physical loca-
tion, and results of other occurrences that are temporal-
ly or causally related to it.
2.2. Scenario structure

Structure refers to the way the constituent parts are put
together to make a whole, and the mutual relations of those
parts in determining the character of the whole. Scenarios
contain distinct types of information (events, goals, condi-
tions, etc.) that can be expressed as attributes and attribute
values. A scenario describes its events as they occur in a total
or partial temporal sequence. Many events, if examined
closely, are composed of subevents, sometimes in a sequence,
sometimes iterated, sometimes as a choice among alterna-
MS directly and leaves a message’’.



T.A. Alspaugh, A.I. Antón / Information and Software Technology 50 (2008) 198–220 201
tives. We use this scenario structure and meaning, outlined in
Fig. 2, as the basis of our approach.

2.3. Inter-scenario relationships

While individual scenarios are effectively represented as
a sequence or narrative, a collection of scenarios does not
naturally have a sequential form. The relationships among
scenarios are often partial orders or more complexly struc-
tured, and are most effectively represented as graphs. Some
examples are:

• the episode relation that relates a scenario specifically to
the episodes it uses (Fig. 6);

• the shared event relation that relates a scenario to other
scenarios sharing one or more of the same events
(Fig. 7); and

• the context relation that relates a scenario to those it can
precede, follow, occur with, or substitute for because of
the context it uses or produces (Fig. 11).

Some of these relationships are implicit in the scenarios.
The relationship collates and presents this dispersed infor-
mation coherently in one place. The episode relation is an
example. All the information it expresses is available in the
scenarios (and in fact the relation can be derived automat-
ically from scenarios whose structure is formalized as in
SMaRT), but the information is much easier to see and rea-
son about in a single diagram.

Other relations are absent or only partially specified in
the scenarios. To express and work with these relation-
ships, we must augment the scenarios with additional infor-
mation. The context relation is an example. If one
scenario’s postcondition implies a second scenario’s pre-
condition, then the first scenario can be said to establish
the context for the second. If two scenarios’ preconditions
Fig. 3. Extracts from EMS att
are logically equivalent, the two scenarios can be said to
potentially occur together because the same context allows
either. However, there are other possibilities the conditions
do not express: the necessary context may be established
inside a scenario rather than at its conclusion, or two
scenarios may be intended as mutually exclusive alterna-
tives, rather than potentially concurrent. Also, in our
experience the conditions are often only approximations,
not written to imply the required context relations between
scenarios, and the additional work to make them do so
and keep them that way while the scenarios evolve could
be better spent expressing the desired relationships
directly. We augment the scenarios with additional infor-
mation in the form of context diagrams, as we discuss in
Section 3.5.

3. Components of approach

3.1. Glossaries

The benefits associated with consistency checking in
requirements specifications are noted by Heitmeyer et al.
[38]. In four of the studies discussed by Weidenhaupt
et al., project glossaries helped stakeholders establish a
common understanding of scenario terms [63]. In an indus-
trial study in which 88 scenarios were used to define
requirements, stakeholders also noted the need to define
general and domain-specific terms [36].

Our glossaries specify the set of values each attribute can
have and define each value. Each attribute is given its own
glossary of values. This simplifies the work of determining
if two attribute values are the same: if the values are given
by the same glossary entry, they are the same, and other-
wise they are distinct. At the same time, the glossaries pro-
vide a connection back to the scenario’s original prose
form. We also support glossaries of specialized terms used
ribute and term glossaries.



202 T.A. Alspaugh, A.I. Antón / Information and Software Technology 50 (2008) 198–220
in the text. Fig. 3 shows attribute-value and term glossaries
for the EMS scenario ‘‘Caller calls EMS directly and leaves
a message’’ (Fig. 1).

The use of glossaries exemplifies the quality of well-
definedness, and also has positive effects that are less direct.
A glossary encourages scenario authors to move the work
of clearly defining each term out of the main text and into
the glossary. Then each term need only be made clear once,
rather than at each use. A reader can read confidently,
knowing he or she can look up any unfamiliar term.
Glossary support encourages reuse of already-defined
terms as appropriate, instead of one or more new terms
with the same or nearly the same definition. A smaller
number of more-distinct concepts are used, rather than a
larger set of concepts not clearly distinguished from each
other. All this results in efficiencies for authors and readers,
and helps achieve a minimal and coherent scenario
collection.

3.2. Episodes

Episodes, sequences of events intentionally shared by
two or more scenarios, play a significant role in scenario
management [53]. To manage episodes, a system must be
able to distinguish events and recognize those that are
identical. Two events are identical if they share the
same actors and action. The set of actors for a system is
well-defined; hence, a tool can readily recognize identical
actors in two or more events. However, the set of actions
may not be so well-defined. If so, the intervention of an
analyst is needed to recognize identical actions.

We envision several ways to support the identification of
identical actions. In each case presented below, the tool
presents pairs of potentially identical actions, the analyst
determines whether they are identical or distinct, and the
tool records the decision for future use.

1. The tool presents only the pairs of actions that the analyst
asks for. The analyst chooses which pairs to examine,
but for a thorough comparison, many pairs must be
examined.

2. The tool presents potentially identical pairs of actions

whose textual descriptions are similar. The analyst may
have to examine many pairs, but fewer than in the first
method.
Fig. 4. Possible EMS episo
3. The tool presents only potentially identical pairs of actions

that, if identical, would make two events identical. The
textual descriptions of the actions must be similar, and
the actions must appear in two events sharing the same
actor. The analyst examines fewer pairs and many
actions will not need to be examined. The analyst only
need examine the pairs that might result

4. The tool presents only potentially identical pairs of actions

that, if identical, might make two subsequences of n or

more events identical. In addition to the three previous
conditions, the events that the actions appear in must
be part of two shared subsequences of length n P 2 that
are potentially identical. n may be adjusted to reduce the
number of presented pairs as desired.

Once episodes are identified and recorded in the scenario
database, several helpful features are possible:

1. Display of an episode in a scenario either as the episode
name only, or expanded with the episode’s events visible
inline in the scenario.

2. Visible marking of episodes when the events of a scenar-
io are displayed.

3. Links from each scenario to others sharing the same episode.
4. Display of the scenarios that share an episode either

individually, or simultaneously with one shown as a
variant of the other(s).

5. A warning when an event in an episode is edited.
6. Presentation of a choice when editing events in an episode:

‘‘change all the scenarios that share this episode’’, or ‘‘de-
tach this scenario from the others and change it only, leav-
ing the others the same’’.

The value of these features increases with the size of a pro-
ject. As the numbers of both scenarios and developers
increase, it becomes more difficult to track scenario
redundancy and dependencies. Episodes explicitly represent
these relationships, allowing analysts to monitor and control
inter- and intra-scenario evolution. In addition, managing
decisions about scenario consistency and dependency can
prevent and reduce errors in the scenario database. This early
prevention of errors can save money and time in the require-
ments analysis process: the earlier errors are caught, the eas-
ier and more inexpensive they are to fix. Thus, our episode
management strategy improves requirements analysis by
des in S2, S3, and S4.



E2 "MakeRecording"

S24 "Subscriber 
replies to a 
message"

S23 "Subscriber 
forwards a message 

with a preface"

S26 "Subscriber 
records a message 

and sends it to 
someone"

Fig. 5. Episode reference diagram for EMS.

Fig. 6. Episode reference diagram for the ABB Euronet scenarios.

T.A. Alspaugh, A.I. Antón / Information and Software Technology 50 (2008) 198–220 203
partially automating event comparisons, error prevention,
and dependency tracking, resulting in a faster, more reliable
scenario development process.

Table 4 shows potential episodes shared by EMS scenar-
ios S3 and S4, and by S2, S3, and S4. Each scenario’s
events are listed with their event numbers in that scenario.
We see that events 3–6 are shared by S3 and S4, and could
be abstracted as an episode shared by both scenarios, as
could S2’s events 3 and 4 and S3 and S4’s events 5 and 6.

3.3. Episode reference diagrams

An episode reference diagram shows which scenarios use
other scenarios as episodes. Each node in the diagram rep-
resents a scenario, and each edge connects a scenario to
another scenario, lower in the diagram, that is an episode
of the first one. Fig. 5 shows the episode references for
the 32 EMS scenarios. These scenarios have a simple and
straightforward reference pattern, and most of the scenar-
ios do not use an episode. Fig. 6 shows the episode refer-
ence diagram for the 64 Euronet scenarios, which use
each other as episodes to a startling degree.

An episode reference diagram is useful in several ways:

3.3.1. A compact and informative view
Episode reference diagrams show how scenarios share

episodes, in a compact and informative way. It takes some
work to extract this information from the scenarios, because
the connections are dispersed among the scenarios and the
larger relationships are not obvious from simply reading
the scenarios. An episode reference diagram presents these
relationships all at once, clearly and in a small space.

3.3.2. Identifying dependencies
Each episode shared by two or more scenarios repre-

sents a dependency between those scenarios [6]. In the
center of Fig. 6 we see that episode 46 is shared among
the six scenarios 2, 3, 8, 10, 29, and 31. These scenarios
are therefore related, and a change to one is likely to neces-
sitate changes in some or all the others. Any change to epi-
sode 46 changes the others, as its events are part of each of
them. A change to any of them may result in changes to the
others, to the extent that they are coupled by the shared
events of the episode and the shared rationale for its use.
If the overall design evolves and reduces the coupling
among them, the broad sharing of episode 46 may end,
either with a new episode similar to 46 that replaces it as
an episode in some of the scenarios, or by independent
in-line event sequences that provide a customized replace-
ment for 46 in some or all of the scenarios. The evolution
of the dependencies changes the episode references, and is
reflected visually in the diagram as it evolves to match.

3.3.3. Identifying multiple dependencies

An episode reference diagram shows the relationships
for more than one episode at a time, and is particularly use-
ful for showing how scenarios are simultaneously related
through more than one episode. An example of this is sce-
narios 16 and 17 in the lower right of Fig. 6, which are
related through their episodes 13 and 15, and 17 and 18
which are related through all three of their episodes 13,
15, and j. The diagram enables analysts to consider depen-
dencies resulting from several episodes at once, and to
quickly trace chains of references through several episodes.

3.4. Shared events

The same events can occur in several scenarios, whether
because the task they describe is needed for the work of
those scenarios, because the context they need or produce
occurs at those points in the scenarios, or for other reasons.
Events shared among scenarios often indicate a dependen-
cy between the scenarios, so that a change in one necessi-
tates a change in the others. Analysts can create episodes
from the shared events to make the sharing explicit, but
only if they are aware the sharing exists. The sharing is
implicit in the scenario text but is not obvious in that form,
especially for a large collection of scenarios.

A shared event diagram shows which events recur in
which scenarios. Fig. 7 shows a shared event diagram for
the EMS scenarios. Each shared event is shown as two or
more numbered rectangles (such as 3 in the top row and
5 in the row below) connected by a heavy doubled line.
Each of the rectangles represents an instance of the event
in a particular scenario (such as event 3 in scenario S2, in
the top row). It is joined to the other instances of the same
event (as S2’s event 3 is joined to S3’s event 5, and on to
S4’s event 5). See Fig. 4 for the text of S2, S3, and S4. Shar-
ing of an episode involves sharing all the episode’s events as
a single event in two or more other scenarios; this is indi-
cated on the right side of the diagram by the events
(S23’s 2.2.3.1, S24’s 2, and S26’s 3) joined to the circle at
the bottom that represents episode E2.



S2:
S3:

S13:
S14:

S22:
S23:
S24:

S27:

S7:

S26:

S19:
S20:

2.1

2.1

3

5

5

3

3

2.2.1.4.1

2.2.1.4.1

2.4.1

6

2.2.1.4.2

2.2.1.4.2

2.4.2

2.2.1.3.2

4

4

4

6

6

2.2.1.1

2.2.1.1

2.2.1.2

2.2.1.2

2.2.1.3

2.2.1.3

3

2

E2:

2.2.3.1

S4:

S12:

S31:
S33:
S37:

1 3

1 2

1 3

32

31

2

321

2

51

2

S15: 1 2

S18: 32

S21: 21 3

S30: 2

S38: 54

S39: 2

S40: 2

S25:Scenario 1

Shared
Event

Key

Episode

Sharing

3S28:Scenario

E3:

mEvent

Final event in 
its scenario

n

Fig. 7. Shared events diagram for EMS scenarios.

204 T.A. Alspaugh, A.I. Antón / Information and Software Technology 50 (2008) 198–220
The example diagram links events that are textually
identical in two or more scenarios. There is also the case
of events that are similar and may have the same meaning,
but are not worded identically. In order for the diagram to
be the most informative, analysts first need to identify such
similar events and then make them textually identical if
they describe the same event. Some simple techniques for
identifying similar events are sorting events alphabetically
and examining the text (as was done in the EMS study),
or dividing events into actors and actions, and sorting
those individually (as was done in the Euronet study and
supported by SMaRT). More sophisticated techniques
are also possible with appropriate tool support.

A shared event diagram is useful in several ways:
3.4.1. Episode creation
Earlier we discussed tool support for identifying equiva-

lent events. The second step is to decide whether the events
shared among scenarios justify creation of an episode con-
taining them. The shared event diagram shows the extent to
which specific events are shared, and simultaneously points
to the contexts in which they are shared. This extra infor-
mation helps analysts make better and quicker decisions
on creating episodes.
S2:
S3: 1 2 3 4 5 6

1 2 3 4
3.4.2. Working with suffix–prefix overlaps

If the last few events of one scenario are shared as
the first few events of another (see Fig. 8), the analyst
S1:
S2:

1 2 3 4

1 2 3

Fig. 8. One scenario’s suffix overlapping with another’s prefix.
may have intended that the second scenario is intended
to follow the first, starting where the overlap begins.
Even if the scenarios were not created with that intent,
if the events of the first scenario, up to the overlap, cre-
ate the context needed by the second scenario, it is pos-
sible that the two scenarios occur in tandem. Such an
overlap indicates the scenarios may benefit from further
analysis.

3.4.3. Working with shared suffixes or shared prefixes

If two scenarios share a suffix, it may mean the events
they describe create equivalent contexts in the world (see
Fig. 9). This is the case with EMS scenarios S2 ‘‘Subscriber
authentication’’ and S3 ‘‘Subscriber authentication from
unsubscribed telephone’’ whose overlap is illustrated. Sim-
ilarly, when two scenarios share a prefix, it may mean their
events require equivalent contexts, as is the case with EMS
scenarios S20 ‘‘Subscriber archives a message’’ and S21
‘‘Subscriber archives the last message’’. An analyst can
clarify these situations with further examination and anal-
ysis of the scenarios, once the sharing has been identified.
The scenario context relations described below in Section
3.5 provide a means of recording the results of the analysis
for later reuse.
S20:
S21:

1 2 3

1 2 3

Fig. 9. Two scenarios sharing a suffix (EMS scenarios S2 and S3), and two
sharing a prefix (S20 and S21).



S0
S1

S2

t1 t0' t2

Fig. 10. Conditions of overlapping scenarios S1, S2, and S3.

T.A. Alspaugh, A.I. Antón / Information and Software Technology 50 (2008) 198–220 205
3.5. Context

Each scenario describes activities and behaviors
appropriate in some context. The context is created by
the events of other scenarios, by events not described, or
some combination. Whenever one scenario is intended to
create a context for another, or can occur in the same
context as another, the relationship should be made
evident. There are several approaches for doing this.

3.5.1. Overlaps

One approach, informal and often encountered, is to
indicate context by sharing suffixes and prefixes among sce-
narios. The last few events of a scenario S1 are repeated as
the first few events of scenario S2, and this is used to mean
that S2 may overlap and follow S1, or more exactly, the
behavior described by S2 (minus its prefix) can occur after
the behavior described by S1. The shared suffix and prefix
become more than a description of some behavior, in effect
also identifying a specific context. While these overlaps are
convenient and intuitive, they cannot indicate whether any
other suffixes produce the same context, and if so which
ones. The overlap-as-context approach is unable to show
anything more than the simplest context relations.

3.5.2. Pre- and postconditions

A second and very common approach is pre- and post-

conditions for scenarios. The state of the scenario’s world
is abstracted into predicates and variables, and these are
used to make logical formulae about that world. The pre-
condition of a scenario is a formula specifying the context
that the scenario needs – if the precondition is true, then
the scenario may occur – and the postcondition is a formu-
la that will be true in the context the scenario produces.
Pre- and postconditions take advantage of logic’s expres-
sive power. One scenario produces the context a second
scenario needs if the first scenario’s postcondition implies
the second scenario’s precondition. Two contexts are
equivalent if the conditions describe them are logically
equivalent. The change a scenario produces in the world
is reflected in the difference between its pre- and postcondi-
tion. Pre- and postconditions provide a much more flexible,
expressive, and powerful approach to specifying context.

But pre- and postconditions can be difficult to use effec-
tively. It is challenging to write conditions that force the
scenarios to follow each other in exactly the desired rela-
tionships. Our experience (confirmed in validation studies)
is that the pre- and postconditions given to scenarios very
frequently allow scenarios to follow each other in unin-
tended ways, and sometimes prevent scenarios from fol-
lowing each other in intended ways. Analysts use the
conditions to communicate and emphasize what they
believe to be the most important factors in the context.
These factors tend to become obscured when analysts
strengthen the conditions enough to force the intended
scenario sequences. The conflict tends to worsen as the
scenarios and their conditions evolve.
A second limitation on pre- and postconditions’ useful-
ness is that strictly speaking they only describe the context
at the beginning and end of each scenario. Scenarios often
overlap, either by sharing a suffix and prefix as described
earlier or more generally by describing behaviors that
could overlap in time. The contexts at the beginnings and
endings of overlapping scenarios do not show how the sce-
narios can occur, because those contexts are not simulta-
neous. Fig. 10 shows three scenarios overlapping in time.
The context specified by S0’s postcondition occurs after
S1 begins and before S2. Even if the preconditions of S1

and S2 are identical with S1’s postcondition, without more
information it is impossible to say whether or not the figure
illustrates a possible or desired behavior. We do not have
enough information to say whether the context is already
established by t1, or persists until t2, S0 and S1 could
change the context over this interval, as could other scenar-
ios not shown, or activities not covered by any scenario.

A third limitation is that pre- and postconditions on the
state of the world do not distinguish other context relations
such as mutual exclusion between two alternative scenarios
that can occur in the same context.

We have not seen any of these issues addressed effective-
ly in ordinary requirements practice. The commonly seen
approach is to simply to ignore these issues, rely on intui-
tion and verbal agreements in determining the contexts
for each scenario and identifying any problems involving
them, and postpone final identification and resolution of
conflicts and misunderstandings until later in the develop-
ment process.

3.5.3. Scenario context diagrams

A step towards one possible informal approach is illus-
trated in Fig. 11. This diagram describes the contexts need-
ed by and produced by EMS scenario S2 ‘‘Subscriber s

authentication’’, in terms of the other EMS scenarios. Here
we see the scenario that creates a context in which S2 can
take place (S0 ‘‘EMS Startup’’), and the scenarios that
make use of the context that S2 creates (S12 ‘‘Subscriber
s listens to a message’’ and S30 ‘‘Subscriber s disconnects
from EMS’’). There are also indications of which scenarios
may produce contexts that prevent S2 from taking place,
and others that S2 in turn prevents; S1 ‘‘EMS Shutdown’’
prevents S2 from beginning, as does S2 itself, while S3
‘‘Subscriber s authentication from unsubscribed phone’’
prevents S2 from completing (at event 4), in our analysis,
and is itself prevented by S2. The ‘allow’ and ‘prevent’
arrows may have cardinalities: for example, an occurrence
of S0 allows many occurrences (*) of S2, while each occur-
rence of S2 only allows a single occurrence (1) of S30.



Fig. 11. Context diagram for EMS scenario S0 ‘‘EMS startup’’.

206 T.A. Alspaugh, A.I. Antón / Information and Software Technology 50 (2008) 198–220
While the information recorded in a scenario context
diagram is useful as a reference, perhaps the greater benefit
of the diagrams is that they direct the analyst’s attention to
contextual connections between scenarios that otherwise
may be overlooked. In working through the relations
between scenarios one of which produces context another
needs, and between scenarios that may or may not produce
or need equivalent contexts, omissions and misunderstand-
ings are brought to the surface that may otherwise remain
unexamined until later when they may be more expensive
or difficult to address.

We note that scenario context diagrams often require
that the scenarios involved be explicitly parameterized in
order to express useful relationships. In this example, the
subscriber s is assumed as a parameter to most of the sce-
narios, so that when a particular subscriber s1 authenticates
in S2, only that same subscriber s1 is thereby allowed to dis-
connect in S30. At the time of this research, we did not
have the technical foundation (in terms of a suitable sce-
nario languages and tools) that would support explicit
parameterization.

We also note that there is often not enough information
available at the requirements stage to make a complete
context diagram. It appears that context diagrams are by
necessity an informal adjunct to scenarios, useful to record
such relationships as can be inferred and as a visual aid for
discussion analysis. Within these limitations, they can be
useful for exploring and recording analyst’s understanding
of each scenario’s context, and in the incomplete and evolv-
ing state of knowledge that requirements analysts work
with, can be more effective than event overlaps or pre-
and postconditions.

3.6. Similarity

Duplicate scenarios can occur when an analyst writing a
scenario does not realize that the collection already con-
tains a scenario describing the same behavior; or when dur-
ing scenario evolution two scenarios converge to describe
the same behavior, although they initially described two
distinct behaviors. Exact duplication of a scenario in a col-
lection adds unnecessary work for maintaining both sce-
narios, and the risk that one of the duplicates will be
updated and the other will not, making the collection
ambiguous and internally inconsistent; near-duplication
of a scenario in a collection introduces ambiguity and
inconsistency directly. In a large collection, duplication
can go unnoticed if it must be detected manually. An auto-
mated similarity measure focuses an analyst’s attention on
the scenarios most likely to be exact or near duplicates, so
that fewer scenarios need be examined to eliminate duplica-
tion. A similarity measure can also help an analyst identify
related scenarios that must change together, and to search
for scenarios with certain attributes and events.

A similarity measure is a function that produces a num-
ber expressing the degree of similarity between two scenar-
ios. Although no other researchers have published
specifically on similarity measures between scenarios, there
has been research on measuring similarity between various
kinds of entities [22,50]. Here, we discuss a similarity mea-
sure specifically tailored for scenarios formalized as
described in Section 2.2 [6]. To measure similarity, we con-
sider each scenario as a set of attribute values. We assign
the attributes embedded in episodes and events to the sce-
nario in which they appear, so that all attributes of a sce-
nario are examined.

Our similarity measure considers only the syntactic rep-
resentation of scenarios. It examines whether two attribute
values are identical, but not any other relation between
them (such as ordering or subsumption) that might arise
from a semantic structure. This syntactic focus has several
advantages: it is easier to understand, the results of the
measure map in an intuitive way to the scenarios, and the
extra labor of constructing a semantic structure is not
needed.

This similarity measure has several important proper-
ties. First, its values are normalized to lie between 0 and
1, with 0 indicating complete dissimilarity and 1 indicating
equality. Second, it is customizable for different applica-
tions, including scenario search mechanisms and grouping



T.A. Alspaugh, A.I. Antón / Information and Software Technology 50 (2008) 198–220 207
strategies. Third, it can be computed using a computer
algorithm, so that similarity can be measured without cost-
ly and time-consuming human evaluations. Fourth, it uses
attribute glossaries, described above, to simplify scenario
comparisons.

For scenario comparison, we select scenario attributes
with common values stored in a glossary. Then, ‘‘equiva-
lent’’ attributes are those with the same name in the glossa-
ry. In a more complicated strategy, an algorithm could
classify equivalent attribute values according to an external
semantic structure. Here, we limit the attributes considered
to those that require the use of glossaries.

The similarity measure compares scenarios as sets (i.e.,
unordered lists without duplication) of attribute values,
and examines these sets for overlap. Other classes of simi-
larity measures account for sequence of elements such as
events [42]; our measure does not, in order to produce a
measure that is more easily understood. Thus, for two sce-
narios S1 and S2, each has an associated list of attribute
values. Consider the lists of attributes for two scenarios
S1 and S2:

S1 ¼ fActor3;Actor5;Actor6;Goal2; Purpose2;

Viewpoint1;ConcretenessLevel0g;
S2 ¼ fActor3;Actor4;Actor5;Actor7;Goal2;

Purpose1; Viewpoint1;ConcretenessLevel0g:

We define the similarity measure S(S1,S2), the similarity be-
tween scenarios S1 and S2, as the number of common attri-
bute values in each attribute list, divided by the sum of the
sizes of each attribute list, (see [62] for other ratio models):

SðS1; S2Þ ¼
2� jS1 \ S2j
ðjS1j þ jS2jÞ

The factor of two normalizes the result so that identical
scenarios have a similarity of 1. Therefore, the similarity
between scenarios S1 and S2 is S(S1, S2) = 10/15 = 0.667.
The similarity measure can be seen as a percentage of over-
lap, where the minimal similarity value of 0 indicates no
similarity, and the maximal value of 1 indicates complete
overlap in the attribute lists.

In this simple scheme, each attribute value can be con-
sidered to have a ‘‘weight’’ of 1. A family of similarity mea-
sures arises when we allow different weighting schemes,
where each attribute or attribute value is assigned a weight
between 0 and 1. Then, when the similarity measure is tak-
en, each attribute value in the measure is multiplied by its
weight. One weighting function might, for example, assign
a weight of 1 to each actor, and a weight of 0 to all other
attributes. With this weighting, scenarios S1 and S2 would
have a similarity measure of 2/7, about 0.289; by this mea-
sure, the two scenarios are much less similar. In this way,
the weighted similarity measure emphasizes similarity in
particular attributes (by assigning them high weights) and
ignores difference in others (by assigning them weights of
zero). This can be used for grouping similar scenarios
based on particular attribute values, or for scenario
searches. The weighted similarity measure can be particu-
larly important for episode searching and matching.

Mathematically, we can write the weighted extension of
S as SW, the weighted similarity measure between two sce-
narios, where a denotes an attribute, and wt(a) denotes the
weight assigned to attribute a. Note that, to avoid division
by zero, we define the similarity between two scenarios to
be 0 if all their attribute values have zero weights:

SW ðS1; S2Þ ¼

P

a2S1\S2

2 � wtðaÞ
P

a2S1

wtðaÞ þ
P

a2S2

wtðaÞ

We also extend these measures to groups of any number of
scenarios by taking the average of the similarity of each
pair of scenarios. We extend S to S*:

S�ðS1; S2; . . . ; SnÞ ¼

Pn

i¼1

Pn

j¼iþ1

SðSi; SjÞ

nðn� 1Þ=2

For example, to calculate the similarity measure for S1,
S2, and S3, where S1 and S2 are given above, and

S3 ¼ fActor1;Actor4;Actor6;Actor7;Goal1; Purpose1;

Viewpoint3;ConcretenessLevel0g;

we must compute

S�ðS1; S2; S3Þ ¼
ðSðS1; S2Þ þ SðS1; S3Þ þ SðS2; S3ÞÞ

3
¼ 0:478

Computed in this fashion, S* gives an average of the simi-
larities of each pair of scenarios in a group.

We may also extend SW to SW* in a similar fashion:

SW �ðS1; S2; . . . ; SnÞ ¼

Pn

i¼1

Pn

j¼iþ1

SW ðSi; SjÞ

nðn� 1Þ=2

These two extensions, weighting and group comparisons,
build a family of measures which are powerful tools for sce-
nario management. The general measure can be used to
search for and select scenarios with particular characteris-
tics from a scenario database, quickly and automatically,
as in [44]. It can also help identify accidental duplication
in a large set of scenarios. Using the similarity measures,
SMaRT will present similar scenarios, or episodes, to an
analyst for evaluation and possible elimination. Because
of their simplicity and flexibility, the similarity measures
provide both quick automatic processing of data that
would take hours by hand, and a measure that corresponds
to our intuitions about scenario similarities.

4. SMaRT

The Scenario Management and Requirements Tool
(SMaRT) developed at NCSU assists analysts working
with scenarios by supporting the scenario structure
described above (Section 2.2), glossaries of attribute values,



208 T.A. Alspaugh, A.I. Antón / Information and Software Technology 50 (2008) 198–220
episode management, and efficient authoring, navigation,
and editing of scenarios.

SMaRT is implemented using a database on a central
server and is accessed over the Internet through a browser.
Scenarios in this database are organized into projects, and
each project has a list of analysts allowed to edit or view
the scenarios, episodes, and glossaries for that project. A
scenario is created by associating values in the project’s
glossaries with the attributes for that scenario. New values
may be added as needed to the glossaries, existing values
can be edited (with the changes appearing everywhere the
Fig. 12. SMaRT Scenario Editor screen showing revised Euronet scenario
27.
value is used), and unused values can be found and deleted.
The attributes include actors, actions, events, goals, obsta-
cles, requirements, and conditions. SMaRT maintains a
clickable cross-reference for each attribute value giving
every place where it is used. The events of a scenario can
include simple events, episode references, lists of events
treated as a single compound event, iteration of events,
and alternation among events. Episode references can be
expanded to show the events of the episode instead of the
name of the episode, and the events of the episode can be
edited if desired in this context. Clicking on the name in
an episode reference takes the analyst to an episode
window showing all the information about that episode.

Having scenarios expressed in the structure supported
by SMaRT gives a basis for analyzing scenarios both
individually and as an entire project, and forms a founda-
tion for expanding automated support for working with
scenarios and new presentations and analyses of the
information contained in scenarios.

A screen shot of the Scenario Editor is shown in Fig. 12.
The scenario being edited is revised Euronet scenario 27
‘‘Revise Quote’’.

Future work for SMaRT includes implementation of
similarity measures, expanded cross-reference capability,
and integration of support for shared event diagrams, epi-
sode reference diagrams, and scenario context diagrams.

5. Validation

In this section we summarize the results of two
validation studies, the first on EMS (Enhanced Messaging
System), a voice mail system used by BellSouth Telecom-
munications to prototype new features for its products,
and the second on Euronet, a quote management system
developed and used internally by Asea Brown Boveri
(ABB). The EMS study was conducted with a domain
expert from BellSouth, so that we were able to engage in
dialogue during the course of the study and present some
results for discussion and feedback. The Euronet study
was done on the ABB requirements specification, but since
ABB had completed the Euronet project some time earlier,
we were not able to interact significantly with analysts or
stakeholders there or present our results for feedback. In
both cases we conducted the work introspectively and kept
detailed logs so that we could go back and analyze our
conclusions and the evidence behind them.

5.1. Evaluation criteria for the studies

We consider our approach to be a basis for automating
scenario tasks that are difficult, time-consuming, or
impractical to do by hand, and as a result a basis for pro-
ducing scenarios of higher quality (better-defined, more
coverage, more nearly minimal, and more coherent) that
better support efficient development of appropriate sys-
tems. Therefore, we can evaluate the approach by showing
whether it achieves these qualities as well or better than



Table 1
Numbers of EMS artifacts, before and after the study

Before After

Requirements 45 44
Scenarios 32 40
Episodes 2 1
Defined terms 17 21
Conditions 10 14

T.A. Alspaugh, A.I. Antón / Information and Software Technology 50 (2008) 198–220 209
working by hand, but significantly faster or easier due to
automation; or that it provides additional support or anal-
yses impractical to do by hand that can be used to improve
scenario quality; or that it supports greater expressiveness
that can be used to produce higher-quality scenario
collections.

We show this by comparing scenarios produced or
evolved using our approach, to scenarios produced by
other people and/or using other methods. Where possible,
we compare the scenarios based on objective characteristics
such as the number and scope of problems that were found,
and the person-hours that were necessary to find them.
Where that is not possible, we compare the scenarios based
on our judgement and on our experience in both the
research world and the industrial software development
world. For the EMS study, we were able to get some inde-
pendent feedback from the stakeholder.

In addition, for the Euronet study, we can evaluate
both the effectiveness and the efficiency of our approach
in terms of quality results achieved and time required
to achieve them, by comparison with the results from
and time required for the earlier goal-based study of
Euronet [13].

5.2. The EMS study

EMS is a comprehensive telephone voice messaging sys-
tem used by BellSouth Telecommunications to prototype
new features for its products. It supports a wide range of
functionality, including: access and authentication; sub-
scriber interactions with the EMS (e.g., notifications and
message processing); caller interactions with the EMS
(e.g., recording of incoming messages and the marking of
certain messages as urgent); and subscriber configuration
and management functions (e.g., recording announcements
and archiving messages).

We performed the study described here during the sec-
ond half of the collection and specification of the EMS
requirements for another research project that needed a
clear requirements specification as the basis for an evalua-
tion of later-phase development methodologies.

EMS was a good basis for a validation study of scenario
support for effective requirements for a number of reasons.
It was a real system, of manageable size, whose require-
ments and scenarios were not determined by us [52]. A
domain expert from BellSouth Telecommunications con-
trolled the content of the requirements and scenarios, lim-
iting the effect of any biases on the part of the authors and
ensuring that the scenario collection was substantial and
genuine. Its requirements and scenarios were written by
three experienced and capable requirements engineers
(the domain expert and the two authors), who conducted
inspections, detailed walkthroughs, and reviews over a
period of eight weeks before the study was begun. The final
scenarios were used successfully as the requirements for
developing a prototype system as part of another research
project.
For this study, we started with the requirements and sce-
narios as they stood after the eight weeks of inspections,
walkthroughs, and reviews, and our notes and logs of that
process. We explored what analyses, indexes, cross-refer-
ences, and diagrams would be useful in producing effective
requirements, especially those that could in principle be
produced automatically. We manually produced examples
of them in order to evaluate their effectiveness, and exam-
ined in what ways and to what extent they aided us in
improving the well-definedness, coverage, minimality, and
coherence of the EMS requirements (including the scenar-
ios). The scenarios already made use of a glossary and epi-
sodes at the beginning of this study. We analyzed,
extended, and improved the glossary and made preliminary
versions of attribute glossaries. We analyzed the episodes
(originally there were two, later only one) by expanding
them inline in each scenario sharing them, to verify that
the episode relationship was appropriate and to explore
analogous conditions across all the scenarios sharing an
episode. We identified similar or identical events shared
by two or more scenarios, manually constructed shared
event diagrams, and analyzed the consequences of the shar-
ing for the scenarios. We explored the allowed and desired
contexts for the scenarios, individually and in terms of
other scenarios, and examined alternate ways of expressing
and working with the contexts, including a predecessor of
scenario context diagrams. Finally, we manually calculated
similarity among a subset of the scenarios and compared
the results with our intuitive perceptions of their similarity,
and explored how the similarity could be used in increasing
the quality of the requirements. We continued keeping
detailed notes and logs during the study, and later were
able to analyze them in some detail to determine what
had happened and why.

A preliminary version of the EMS study was presented
in an earlier publication [4].

5.2.1. Study artifacts

The EMS specification consists of requirements, scenar-
ios, episodes, and glossaries for terms and conditions.
Table 1 gives the total of each kind before and after the
study. Fig. 13 presents examples from after the study,
and the entire collection is available online [11].

The requirements were expressed in traditional prose
form, and used the words and phrases defined in the glos-
sary. For example, R3.2.13 specifies that a subscriber can



Fig. 13. Example EMS definitions, requirements, state variable and scenario.

Fig. 14. Subscriber menu tree.

210 T.A. Alspaugh, A.I. Antón / Information and Software Technology 50 (2008) 198–220
record a message and send it to a recipient, and the glossa-
ry defines what ‘‘recipient’’ means in this context.

The scenarios ranged in length from 1 to 12 simple
events. Each scenario was traced back to up to four
requirements; the example scenario S26 is traced back to
requirement R3.2.13. Each scenario had up to 4 precondi-
tions and postconditions; the pre- and postcondition for
S26 are both the primitive condition ‘‘Authenticated’’. Epi-
sodes (identified manually) were defined and were referred
to by three or four scenarios. S26’s event 3 is a reference to
the episode ‘‘MakeRecording’’ (not shown here). S26’s
event sequence contains an iteration (event 2), whose effect
is to repeat subevents 2.1, 2.2, 2.3, and 2.4 until event 2.4.1
signals termination of the iteration. Event 2.4 is also a com-
pound event, an alternation among choices 2.4.1 and 2.4.2.
Iteration and alternation are well-known concepts, but we
note that they are not commonly used for scenarios or use
cases in practice.

Several ‘‘menu trees’’ (one is shown in Fig. 14) intended
to express the possible sequences of scenarios were pro-
duced for the scenarios at the direction of the domain
expert. These trees were based, we believe, on the fact that
all EMS activity was initiated through a hierarchical voice
menu presented to EMS users. The nodes of the trees were
scenarios, and the indicated sequences were those that
moved between adjacent scenarios in the tree, beginning
at the root and continuing down or up at each node. How-
ever, there appeared to the authors to be some question
whether or not sibling nodes were consistently considered
adjacent in this sense.

5.2.2. Lessons learned

5.2.2.1. Glossaries help establish a common understanding of

terms and concepts. Our experience confirmed what others
have found [36,63]. The glossaries of terms and primitive
conditions were invaluable for helping us record our
gradually-increasing domain knowledge and helping us
consolidate our understanding of the problem and of
the intended solution. An example is the group of terms
that define the various states a message passes through.
Over the course of the study, the successive versions of
the glossary show how we extended our knowledge begin-
ning with messages that could be new, archived, old, or
urgent, extending later to held and erased, and eventually
restricting old to be either old archived or old held, and
separating urgent into an orthogonal category that finally
included private as well. The defined terms formed the
scaffolding on which we then wrote scenarios exploring
and then specifying what could happen with messages of
in the various states.

We found we were unable to create and use attribute-
value glossaries effectively without tool support; we
explored this technique further with SMaRT and the
Euronet study.



T.A. Alspaugh, A.I. Antón / Information and Software Technology 50 (2008) 198–220 211
5.2.2.2. Scenario context diagrams help uncover missing

scenarios and requirements. The process of constructing sce-
nario context diagrams requires that analysts walk through
paths spanning several scenarios, comparing pairs of sce-
narios for degrees of equivalence and comparing the con-
texts required and produced by the various scenarios.
Considering the scenarios in this way draws more focused
attention to these relationships than reviews or walk-
throughs, and some omissions or misunderstandings that
had previously slipped past are caught.

The following missing scenarios were identified almost
immediately during construction of the EMS scenario con-
text diagrams:

• S0 ‘‘EMS startup’’ was discovered because there was no
scenario to provide initial context for any chain of the
others.

• S1 ‘‘EMS shutdown’’, S29 ‘‘Subscriber disconnects from
EMS’’, and S39 ‘‘Caller disconnects from EMS’’ were
discovered because there were no scenarios to terminate
the contexts in which others could take place.

• S13 ‘‘Subscriber has no more messages to listen to’’
was discovered because S12 ‘‘Subscriber listens to a
message’’ could produce a context in which no more
messages were available, but no scenarios existed to
make use of it.S15 ‘‘Subscriber would skip to next mes-
sage but has no more messages’’, S19 ‘‘Subscriber erases
the last message’’, and S21 ‘‘Subscriber archives the last
message’’ were discovered for analogous reasons.

• S38 ‘‘Caller calls EMS directly and leaves a message’’
(Fig. 1) and the corresponding requirement R4.7
(Fig. 13) were discovered to be missing during the
process of matching up scenarios using or making
equivalent contexts. This important requirement had
been discussed early in the initial eight weeks but never
specified, and weeks of reviews and walkthroughs had
failed to uncover the omission.S38 was discovered by
visually comparing the diagram configuration for
subscriber scenarios to that for caller scenarios; the
presence of the corresponding scenario for subscribers,
S26 (Fig. 13), was a prominent difference.

5.2.2.3. Scenario context diagrams help uncover require-

ments errors. The same diagram walkthroughs and com-
parisons that draw focused attention to scenarios also
focus attention on requirements. They force analysts to
think about individual requirements concretely and in spe-
cific contexts. As with scenarios, this focused attention
identifies errors that had slipped past reviews and single-
scenario walkthroughs.

We discovered one such requirements error by noting
scenarios that lead somewhere but have nowhere to come
from, or vice versa. Initial and terminal scenarios like S0
‘‘EMS startup’’ and S1 ‘‘EMS shutdown’’ do this inten-
tionally, but other scenarios do not, and the presence of
other scenarios that either produce a context no other sce-
nario can use, or need a context no other scenario produc-
es, is a sign that something is not right. In this case, we
observed that the pre-study scenario ‘‘Subscriber listens
to an archived message’’ (which does not exist in the
post-study scenarios [11]) lacked appropriate pre- and post-
conditions to describe its initial and final contexts. While
tracing what these conditions should be, we discovered that
we had incorrectly separated this scenario from ‘‘Subscrib-
er listens to a new or held message’’ (which also does not
exist post-study). These two behaviors were originally to
have been distinct and the two scenarios and two corre-
sponding requirements recorded this. Post-study analysis
of our logs showed that subsequent discussions with the
domain expert had indicated that the two behaviors should
instead be the same, but this change was somehow not
recorded in either scenarios or requirements, and the error
was missed by all intervening reviews and walkthroughs.

A second requirements error was discovered while trac-
ing these two scenarios back to requirements. We found
that not only did the two corresponding requirements
incorrectly separate those two cases, but that a third
requirement both scenarios traced back to was also incor-
rect. That was the presentation sequence requirement
R.3.2.1, which incorrectly specified that messages be pre-
sented oldest-to-newest, rather than newest-to-oldest. This
mistake had also been missed despite reviews and walk-
throughs by the domain expert and the two authors. The
two versions of requirement R3.2.1 are shown in Table 2.

5.2.2.4. Scenario context diagrams express when each

scenario can occur. Scenario context diagrams makes
explicit the temporal relationships between scenarios.
Before we constructed the diagrams, we had a certain
degree of intuition and informal knowledge of the patterns
in which the EMS scenarios could occur, and had assigned
pre- and postconditions to the scenarios that suggested the
appropriate contexts but that were not strictly correct and
often not helpful. Drawing diagrams of scenario context
made our intuitive knowledge explicit, revealed ways in
which our intuitive and informal knowledge had been inad-
equate or incorrect, and provided a direct and more accu-
rate expression of what the pre- and postconditions had
attempted to express indirectly.

5.2.2.5. Similarity measures can identify similar scenarios.

Although the results were not conclusive, we found evi-
dence that our similarity measure identified scenarios that
we independently judged as similar [7,23]. We validated
the similarity measure on a group of 12 EMS scenarios.
There were 66 possible pairs of the 12 scenarios (12 · 11/
2). Of these 66 pairs, we judged 27 pairs to be similar sce-
narios, and the remainder to be dissimilar. The necessary
calculations for the similarity measure were done using a
spreadsheet to record the necessary data and calculate the
results; setting up the calculations and checking them
required a week of full-time work. It is clear that manually
calculating similarity with our measure is time-consuming,



Table 2
EMS requirement R3.2.1 and some related terms

An old archived message is an archived message that was received more than some certain interval of time ago.
An urgent message is one that the caller that left it identified as such by a command; urgent messages are treated with a higher priority in certain cases.

Pre-study
R3.2.1:

EMS shall present messages in chronological order (oldest to newest), except that EMS shall present all urgent new messages to the
subscriber before presenting any new message that is not urgent.

Post-study
R3.2.1:

EMS shall present messages in the following order: old archived messages and old held messages; then urgent new messages, from
newest to oldest; and finally all other messages, from newest to oldest.

212 T.A. Alspaugh, A.I. Antón / Information and Software Technology 50 (2008) 198–220
subject to human error, and impractical – tool support is
essential. The calculation gave all attributes equal weight
and treated each episode reference as a single attribute
(rather than expanding episode references and using the
subevent actors and actions as individual attributes).

Examination of the results shows some promise for
using automated similarity calculations. We found that of
the 66 similarity values, the lowest 32 were for pairs judged
dissimilar; 19 of the next 22 highest were for pairs
judged similar; and the 12 highest values were for pairs
judged similar. The similarity values are presented in
Table 3. These results support our hypothesis that the
measure can be used to direct analysts’ attention to similar
scenarios that require further attention, although the mea-
sure is not a substitute for additional human judgement.

5.2.3. Stakeholder feedback

For the EMS study, we had access to a stakeholder,
namely the domain expert from BellSouth who was our
customer for the other EMS research project. Our interac-
tions with him consisted of one face-to-face meeting and
conference calls approximately every two weeks over a
12-week period. During that time, we elicited the EMS
requirements and scenarios from him and analyzed and
revised them in successive review cycles, until they were
acceptable to him and we felt we understood them and
were all in agreement.

The authors emailed the stakeholder successive revisions
of the requirements and scenarios, and during the calls we
conducted reviews and walkthroughs and discussed issues
raised during them or by any of the participants. The stake-
holder was pleased that we were able to identify problems
and improve the specification, no matter what techniques
we were using. For example, the identification of S38
‘‘Caller calls EMS directly and leaves a message’’ and the
corresponding requirement R4.7 were of considerable
interest; but the fact that we uncovered them by analyzing
scenario contexts was not significant to him.

The stakeholder also had little interest in a number of
issues that we felt were problems. Examples were the initial
and terminal scenarios for EMS as a whole, our analysis of
the menu trees in terms of scenario context diagrams, and
some clarifications of the definitions of defined terms. All
these were cases in which we did not understand the
requirements specification, even though the stakeholder
did and was satisfied with it. As in the case of problems
of interest to the stakeholder, we found term glossaries,
shared events, and scenario context diagrams to be effective
and helpful in identifying problems we felt needed further
attention and in resolving them successfully. This efficiency
and effectiveness was of value even for problems the stake-
holder did not find important, because analysts need to
understand requirements just as stakeholders do.

5.2.4. Discussion

Our experience in the EMS study confirmed that term
glossaries support scenario well-definedness, and contrib-
ute to coherence and minimality, as others have noted also.

The EMS scenarios did not make much use of episodes,
possibly because users of the system send input through a
keypad and receive output as spoken text so that the fun-
damental design of the system focuses on a relatively small
number of distinct behaviors. In addition, the lack of auto-
mated support for episodes meant all the analyses and con-
versions had to be done manually, so that we did fewer of
them. Consequently there was little opportunity in this
study to explore the effect of episodes and episode reference
diagrams on the quality of scenarios as requirements.

We found that scenario context diagrams helped indi-
cate incoherence and gaps in coverage, and direct attention
to the areas that would resolve it. Identifying these gaps
and areas of incoherence is the necessary first step towards
improving the coverage and coherence of the scenario
collection. We distinguished three kinds of gaps in this
study, based on how instances of them were identified.
The easiest kind to find, and the kind that is probably of
the least interest, was missing behavior consisting of initial
and terminal scenarios such as S0, ‘‘EMS startup’’. The
second kind was missing behavior that was turned up
through the analysis of pre- and postconditions for the
relationships required by the scenario context diagrams,
such as S13, ‘‘Subscriber has no more messages to listen
to’’. The third and most interesting kind was behavior
whose absence was indicated visually by analogy between
the scenario context diagrams, exemplified by S38, ‘‘Caller
calls EMS directly and leaves a message’’.

Some of the temporal and causal relationships among
scenarios were indicated by the ‘‘menu trees’’ of scenarios.
Other relationships were expressed, not very effectively, by
the scenario pre- and postconditions. The scenario context
diagrams expressed these relationships more fully and more
effectively. We also found that the scenario context dia-



Table 3
Scenario pairs, sorted from least to greatest calculated similarity

Rank A B S(A,B) Rank A B S(A,B)

1. 11 33 0.07 34. 26 31 0.21

2. 12 33 0.08 35. 31 32 0.21

3. 11 26 0.08 36. 1 11 0.25

4. 11 32 0.08 37. 28 31 0.25
5. 12 26 0.09 38. 28 33 0.25
6. 12 32 0.09 39. 1 12 0.26

7. 23 33 0.09 40. 27 33 0.27

8. 1 28 0.10 41. 29 33 0.27

9. 11 28 0.10 42. 30 33 0.27

10. 12 28 0.10 43. 27 31 0.29

11. 23 26 0.10 44. 29 31 0.29

12. 23 32 0.10 45. 30 31 0.29

13. 1 27 0.11 46. 1 23 0.30

14. 1 29 0.11 47. 26 27 0.32

15. 1 30 0.11 48. 26 29 0.32

16. 1 31 0.11 49. 26 30 0.32

17. 11 27 0.11 50. 27 32 0.32

18. 11 29 0.11 51. 29 32 0.32

19. 11 30 0.11 52. 30 32 0.32

20. 11 31 0.11 53. 26 28 0.38

21. 12 27 0.11 54. 28 32 0.38
22. 12 29 0.11 55. 11 23 0.40

23. 12 30 0.11 56. 12 23 0.42

24. 12 31 0.11 57. 32 33 0.44

25. 23 28 0.12 58. 28 29 0.50

26. 23 27 0.13 59. 28 30 0.50

27. 23 29 0.13 60. 11 12 0.52

28. 23 30 0.13 61. 27 29 0.57

29. 23 31 0.13 62. 27 30 0.57

30. 1 33 0.15 63. 26 32 0.58

31. 1 26 0.17 64. 29 30 0.71

32. 1 32 0.17 65. 26 33 0.74

33. 31 33 0.18 66. 27 28 0.88

Similarity was calculated including actions and after reconciliation of
synonyms. The pairs in boldface are those deemed intuitively similar by
the analyst.

T.A. Alspaugh, A.I. Antón / Information and Software Technology 50 (2008) 198–220 213
grams specified context relationships that we had been
informally aware of but which did not fit into the format
of the ‘‘menu tree’’. Scenario context diagrams thus allow
us to improve the coverage and coherence of the scenario
collection by expressing significant relationships that are
not otherwise evident.

We found that calculations of similarity were impracti-
cal without automated support, and that there was promise
that the calculations could help support human intuition
once automated support is available.
5.3. The Euronet study

Euronet is a quote management system used internally
by ABB. It supports salespeople, design engineers, plant
managers, and business analysts as they create and manage
quotes to customers, the line items that give the details of
each quote, customer orders, the item build orders that give
the details of each order, and related information. The ini-
tial development of Euronet was not successful, attributed
by ABB to poor quality of the requirements specification.
This initial requirements specification, consisting primarily
of 52 use cases, was the subject of a research study applying
a goal-based analysis to the use cases using GBRAM
(Goal-Based Requirements Analysis Method) [13]. The
requirements specification was then revised and the system
was successfully implemented; we did not have access to
the revised requirements, or any significant interaction with
stakeholders. ABB graciously allowed the use of the initial
requirements specification as the basis for this research.

The Euronet requirements specification was a good sub-
ject for a study for a number of reasons. It was an industri-
al specification for a real system more complex than EMS
but still of manageable size, and specified with no influence
from the authors. Its level of quality was interesting, as it
had been initially judged to be of sufficient quality to serve
as a basis for system development, but later its quality had
been found to be unsatisfactory. The Euronet requirements
specification had been studied in the earlier goal analysis,
and we had access to its data. This gave us two points of
comparison for our own study: the original specification,
and the results from the goal analysis.

For this study we used SMaRT, which was being devel-
oped as the study was conducted. We entered the 52 use
cases into SMaRT and used its automated analyses, sup-
plemented by manual analyses that could be automated
or were planned for later implementation, to understand
and analyze the Euronet requirements. Since SMaRT is a
scenario tool, we entered each use case’s main scenario
and other information as either a scenario or an episode.
Each event was divided into an actor and an action; use
case events that described two or more separate actions
were subdivided into individual scenario events so that
each could be a single actor and a single action. SMaRT
maintained glossaries of actors and of actions so that
actors and actions could be reused, thus enhancing mini-
mality but requiring that each actor or action be examined
and considered carefully in order to decide if it was equiv-
alent to one already in the glossary, or a new one. We also
entered each use case’s title, overview, preconditions, and
postconditions. We created a glossary of specialized terms
and GUI screens used in the use cases. The remaining use
case information (notes, secondary scenarios, and revision
history) was not used in the study. The ‘‘Utilizes’’ lists of
use cases used as episodes by each scenario were not need-
ed, as SMaRT generated this list automatically. We then
examined the problems that this process and the analyses
turned up, and resolved them to the extent possible.
Because we had no access to Euronet stakeholders or
developers, we were unable to resolve some problems
and questions completely; for example, some of the epi-
sodes referred to in the use cases but not defined were
impossible for us to define with any confidence. In such
cases we noted that the item was undefined or incom-
pletely defined. Scenario similarity calculations were not
implemented by SMaRT at that time, and we did not
perform manual similarity calculations for Euronet. We



214 T.A. Alspaugh, A.I. Antón / Information and Software Technology 50 (2008) 198–220
manually constructed the episode reference diagram at
several points in the study, using the episode index
generated by SMaRT. Construction of this diagram is
automatable but was not implemented at the time of
the study. This diagram was particularly informative for
Euronet due to the complex episode relationship among
its scenarios.

The study spanned a period of 20 days.

5.3.1. Study artifacts

The Euronet requirements specification consisted of use
cases, screen sketches, and a general overview [18]. It
included no requirements per se. Many of the use cases
use others as episodes; some of the episodes are not
defined. The screen sketches are not essential to under-
standing the use cases, and were not used in the study.
Table 4 gives the total of each kind before and after the
study.
Table 4
Numbers of Euronet artifacts, before and after the study

Before After

Use cases not used as episodes 25 Scenarios 32
Use cases used as episodes 27
Episodes used but not defined 12 Episodes 34
Screen sketches 26

Fig. 15. Euronet use case
The use cases are presented in a relatively consistent for-
mat. An example use case (UC 27 ‘‘Revise Quote’’) is
shown in Fig. 15 (the post-study scenario 27 is shown in
Fig. 12). Each of the use cases is numbered (1 through
52) and has a short title. The content of each use case is
organized as shown in Table 5. The event lists range in
length from 1 to 19 events, with 3 events being most com-
mon. The use cases vary from one to six pages in length,
with two pages being the most common.
5.3.2. Lessons learned

5.3.2.1. Glossaries and cross-references support well-defin-

edness. Expressing the 52 Euronet use cases with attri-
bute-value pairs and glossaries in SMaRT immediately
revealed a large number of problems, ranging from the
annoying to the serious. The use cases named in the
‘‘Utilizes’’ section of each use case description frequently
do not match the use cases that appear in the event list
(for example, in Fig. 15 use case 27’s ‘‘Utilizes’’ section
lists ‘‘B. Use Choose Approver’’, and no use case named
‘‘Choose Approver’’ is used in its events). The use cases
refer to a large number of statuses of various items,
but not all these statuses are defined. Ten screens named
in the use cases are not defined with a screen shot like the
others; four of the ten are probably equivalent to similar-
ly-named defined screens, leaving six that are definitely
27 ‘‘Revise Quote’’.



Table 5
Organization of Euronet use cases

Heading Contents Occur in

Overview A summary consisting of 1–3 sentences All 52
Preconditions List of 0–2 prose preconditions, usually numbered 51
Main scenario List of 1–19 prose events, usually numbered; All 52

some refer to (‘Use’) 0–7 other use cases 27
Scenario notes List of 0–2 numbered sentences 4
Postconditions List of 0–3 prose postconditions, usually numbered 43
Required GUI List of 0–4 GUI screens for the use case; 38

often does not match screens actually referenced
Secondary scenarios Numbered list of 0–3 alternative scenarios; 27

each is given as a prose sentence or paragraph.
Utilizes List of 0–7 use cases used by this use case; 19

often does not match use cases actually referenced
Extends (No Euronet use case extends another one)
Other requirements (No Euronet use case references any)
Revision history Date (11 August 1999) and ‘‘Initial release’’

T.A. Alspaugh, A.I. Antón / Information and Software Technology 50 (2008) 198–220 215
undefined. Of the 26 defined screens, three are never ref-
erenced in any use case. Such lacks indicate that the use
case collection is not well-defined.

SMaRT automatically generates cross-references for
episodes, and cross-references for all glossary values are
planned. These cross-references support analyses and sim-
ple checks that improve well-definedness but need auto-
mated support in order to be practical. For example, in
many cases an entity’s status was set but never examined,
or examined but never set; this is immediately obvious
from the cross-references. We believed many of these
inconsistencies were present simply because no analyst’s
attention had been drawn to them before.
5.3.2.2. Glossaries help reduce undesirable ambiguity in the

specification. The original Euronet specification lacked a
term glossary, and we found it difficult to understand the
significance of certain terms in the use cases. For example,
the verb ‘‘close’’ was clearly used with one or more special
meanings which we recognized but did not understand. We
also found it difficult to separate out the appropriate mean-
ings of terms that appeared to be used in two senses. For
example, ‘‘order’’ was used to mean an order from a
customer to ABB, and also an order from ABB to a supplier,
and the distinction was not always clear from context.
Finally, we found it difficult to tell when two terms were
being used for the same concept (for example, it was
unclear at first whether ‘‘Planner’’ and ‘‘BA Planner’’ were
synonymous). We would have required interaction with
stakeholders and analysts to resolve these issues. Even so,
it was clear that the use of term glossaries would improve
the well-definedness, minimality, and coherence of the
specification, and was a necessary prerequisite to identify-
ing and resolving gaps in coverage.
5.3.2.3. Standardizing on a relatively small number of

important words makes it easier to find the right action
and to express the actions effectively. The events in the ori-
ginal Euronet use cases were worded in no consistent fash-
ion. We found that choosing a set of standard words to use
wherever possible greatly reduced the number of separate
actions, and at the same time made the events clearer and
easier to understand relative to each other. This improved
the well-definedness, minimality, and coherence of the sce-
nario collection. Examples were the use of ‘‘select’’ in place
of ‘‘choose’’, ‘‘find’’, ‘‘click’’, etc. whenever it was appropri-
ate. This lesson was analogous to the similar finding for
goal wordings by Anton et al. [13].
5.3.2.4. Episode reference diagrams support well-definedness

and coherence. The episode reference diagram for the use
cases highlights the presence of use cases that are refer-
enced but not defined. Twelve apparent use case names
are referred to in events but not defined; this indicates a
potentially substantial gap in coverage. For example, use
case 11 ‘‘Edit Quote’’ (Fig. 16) refers to the undefined epi-
sode ‘‘Edit Quote Header’’ in event 3.

Episode reference diagrams also support coherence in
the use of individual episodes. They conveniently show
all the locations where an episode is used, and for two or
more episodes at a time, show all the locations where
both (or all) are used together, so that an analyst can
compare the various uses to verify that episodes are used
comparably and consistently in all locations, either individ-
ually or in groups.
5.3.2.5. Episode reference diagrams visually indicates likely

problem areas. We found two kinds of problem indications:
deep paths and clusters.

The episode reference diagram (Fig. 6) has two top-to-
bottom paths of 5 use cases each (for example, 27–25–
11–2–46). We immediately surmised that inappropriate epi-
sode references were likely, due to the difficulty of checking
whether the deeply-nested episodes fit in the context in
which they appear several levels up. Examination showed
that many were questionable. Two are evident from the
diagram: episode 2 ‘‘Retrieve Existing Quote’’ refers to
the undefined episode ‘‘Choose Quote’’ (d in the diagram);



Fig. 16. Euronet use case 11 ‘‘Edit Quote’’.

Fig. 17. Euronet episode reference diagram after our approach.

216 T.A. Alspaugh, A.I. Antón / Information and Software Technology 50 (2008) 198–220
and episode 25 ‘‘Approve Quote’’ includes episode 2 twice,
once directly and a second time indirectly through 11 ‘‘Edit
Quote’’ (Fig. 16). Careful examination shows that the effect
is to retrieve an existing quote, and then immediately
retrieve the same quote again before editing its header
(using the undefined episode ‘‘Edit Quote Header’’, i in
the diagram). We believe deep paths (longer than 3) indi-
cate likely inconsistencies between the episodes being used
and the context they are used in.

The episode reference diagram also has two clusters that
draw the eye, and both turned out to be problematic upon
closer examination. For example, the cluster on the left has
several episodes or scenarios all referring to the same four
episodes: 47 ‘‘Get Ship-To Address’’, 5 ‘‘Get Header
General Information’’, 6 ‘‘Get Header Terms’’, and 7
‘‘Get Header Notes’’. These four episodes are only used
together, and always in the same sequence. Totalling 12
events, it is unclear why they are separate episodes rather
than being combined into a single episode that would be
easier to understand, keep coherent, and work with. Since
we had no access to Euronet stakeholders or analysts it was
not possible to resolve this question, and we cannot rule
out the existence of some rationale for having four separate
episodes. However, it seems likely that they should be com-
bined into one.

Indirect confirmation that deep paths and clusters can
indicate problems comes from the episode reference dia-
gram after the application of our approach, which appears
in Fig. 17. Use of our approach evolved the scenarios so
that the diagram became visually simpler, with one cluster
and most deep paths gone (compare Fig. 6).
Constructing an episode reference diagram manually is
so tedious and time-consuming as to be impractical as a
common practice, so automation based on our scenario
structure supports an analysis that shows evidence of
improving scenario quality but is impractical to do by
hand.

5.3.2.6. Automated episode identification finds duplication

that people have not. Although SMaRT’s similarity mea-
sure and episode identification support was not implement-
ed at the time we performed this study, we manually
identified a number of similar scenarios and possible epi-
sodes. For example, UC ‘‘Change Language’’ partially
duplicated a secondary scenario of UC ‘‘Log On’’. We
uncovered a number of similar duplications while manually
performing episode identification, indicating that episode
identification and shared event analysis can improve the
minimality of a scenario collection. The manual process
was too tedious and lengthy to be practical as an ordinary
requirements practice, so that its automation makes possi-
ble analyses that improve quality but are not practical
without automated support.



T.A. Alspaugh, A.I. Antón / Information and Software Technology 50 (2008) 198–220 217
5.3.2.7. Our approach is more effective and efficient than

GBRAM goal-based analysis. The scenarios our approach
yielded were more coherent and provided better coverage
than the initial ABB use cases and also than the scenarios
produced by the earlier goal-based analysis. Both our
approach and GBRAM produced comparable results in
terms of identifying simple errors, inconsistencies, and
missing information in the initial use cases. However, the
gaps in coverage identified by our approach were more sub-
stantial and of greater significance than those identified by
the goal-based analysis. For example, scenario context dia-
grams helped us uncover new scenario S98 ‘‘Log Off’’ that
defines the events necessary for a user to log off from Eur-
onet, the contexts in which logging off can occur, and the
context produced by a user logging off. This was typical
for the weight and scope of new scenarios identified using
our approach. On the other hand, GBRAM goal-based
analysis of the goal <ENSURE adjustments for pric-
ing for a standard product provided> yielded sev-
en secondary scenarios to represent possible pricing
adjustment alternatives:

• Adjustment determined by competitive level
• Adjustment determined by item quality
• Adjustment determined by rush delivery
• Adjustment determined by sales channel
• Adjustment determined by special features
• Adjustment determined by plant loading
• Adjustment determined by end customer

These were typical of the weight and scope of new sce-
narios identified using GBRAM. The scope and signifi-
cance of these scenarios is considerably smaller than that
of the scenarios uncovered using scenario context.

In addition, applying our approach to the specification
is substantially more efficient than applying GBRAM,
required approximately half the analyst-hours that were
needed for the goal-based analysis. With more completely
implemented tool support, we expect our approach would
be even more efficient by comparison.

5.3.3. Discussion

Our experience in the Euronet study confirmed again
that attribute and term glossaries and cross-references sup-
port well-definedness.

We found that the effectiveness of glossaries for support-
ing well-definedness, minimality, and coherence was
increased by standardizing on a relatively small number
of standard words and phrases. The smaller number of
terms made it simpler to find the term that was needed,
by reducing the number of nearly-synonymous terms that
need to be searched among. Careful and insightful choice
of the standard terms can help the scenarios make the
appropriate distinctions and reduce the cognitive load on
people reading the scenarios.

The Euronet use cases and scenarios make extensive use
of episodes, and this provided a large scope of action for
episode reference diagrams. We found that the diagrams
supported coherence in two ways: by visually directing ana-
lysts’ attention to deep paths and clusters that we believe
often indicate likely areas of incoherence, and by conve-
niently showing an analyst all the locations where a partic-
ular episode (or group of episodes) is used so they can be
checked for consistency.

Identifying events shared among scenarios was shown to
be effective in minimizing the number of distinct events,
episodes, and scenarios, encouraging their reuse and sup-
porting minimality of the scenarios.

Finally, we confirmed again that scenario context dia-
grams are effective in directing attention to gaps in cover-
age and incoherence, as was already supported in the
EMS study.

6. Related work

A number of researchers have noted the need for auto-
mated support in working with scenarios. Maiden describes
the CREWS-SAVRE tool for semi-automatic generation
of scenarios from the actions of use cases [46]. Breitman
et al., present SET (Scenario Evolution Tool) which sup-
ports the orderly evolution of collections of scenarios,
based on a model of fundamental relations and operations
on scenarios. Letier et al., use the LTSA tool to identify
possibly undesired system behaviors, in the form of implied
scenarios, that are difficult to find manually [45]. Woo and
Robinson use tool support to identify similar scenarios
[64]. Our approaches are distinct from those of these
researchers. The goals and capabilities of our SMaRT tool
are different from those of the listed scenario tools; we have
found no other tools with which we can directly compare it.

Similarity has been used extensively for requirements
reuse; for example, semantic similarity has been used with
conceptual graphs [57,64], and analogical reasoning on a
pre-existing case base [49] and on generic domain models
[48]. Semantic similarity is appropriate for these applica-
tions because they reapply the semantic structure of pre-ex-
isting requirements to new contexts. Several researchers
have worked in the area of syntactic similarity measures
for requirements analysis. Natt och Dag et al., examine
the syntactic representation of requirements in the form
of prose, and use a statistical analysis of the preprocessed
text to determine similarity of requirements [50]. Like us,
they also use their similarity measure as an indicator of less
accessible features, in their case relationships between
requirements. Park et al., use similarity measures that
examine syntactic similarity between prose requirements
(in Korean), again using statistical analysis of preprocessed
text [51]. Al-Otaiby et al. independently take a syntactic
approach similar to ours; they analyze sentences in the sce-
narios to extract their grammatical objects, and calculate a
somewhat simpler similarity using only those objects [1].
For our approach, we believe syntactic similarity is more
appropriate. Our approach reuses entire scenarios or attri-
butes, rather than adapting them to new contexts; syntactic



218 T.A. Alspaugh, A.I. Antón / Information and Software Technology 50 (2008) 198–220
comparisons are easier to understand, we believe, and elim-
inate the need to build a semantic structure.

Requirements continually evolve, increasing the need to
track open issues. A goal-based analysis study highlighted
the evolutionary nature of goals, scenarios, and require-
ments [15]. The scenario evolution framework of Breitman
et al. suggests two types of changes that affect scenarios
during development: ‘‘inter-scenario’’ evolution, where
changes involve a set of scenarios, and ‘‘intra-scenario’’
evolution, where changes concern a single scenario
[28,29]. We present a viable strategy to manage the rela-
tionships in both inter- and intra-scenario evolution. Our
strategy is distinct from that of Breitman and Leite; our
strategy extends scenario relationships to include a more
general view of context and similarity and a stronger focus
on dependencies shown in terms of reuse of episodes and
terms.

The issue of scenario management has received attention
but has not been addressed effectively. In their survey of the
use of scenarios in industry, Weidenhaupt et al., note that
the creation, documentation, and validation of scenarios is
a substantial effort in itself [63]. Jarke et al., specifically
note that little research addresses the problems that arise
in managing a large set of scenarios [41]. The Dagstuhl
Workshop on Scenario Management [40], the resulting spe-
cial issue of the IEEE Transactions on Software Engineering

devoted to scenario management [61], and the related spe-
cial issue of the Requirements Engineering Journal devoted
to interdisciplinary uses of scenarios [54] took a broad view
of scenario management reflecting the use of the term in
other areas such as business forecasting, for example the
use of scenarios to manage the unfolding of events or to
examine the results of alternate courses of action. Howev-
er, since that time the use of the term ‘‘scenario manage-
ment’’ in requirements engineering has shifted to more
specifically describe the management of collections of sce-
narios. Alspaugh et al., defined the term with that meaning
and proposed an approach to scenario management based
on glossaries, episodes (scenario fragments that appear in
several scenarios), and measures of similarity between sce-
narios [6]. Some of that work is an early version of the
work presented here. The approach uses a purely syntactic
view of scenarios to support analysts as they work to make
their scenarios consistent; trace and maintain dependencies
among scenarios; look for scenarios that address a partic-
ular behavior; and determine completeness of a group of
scenarios [6].

Breitman and Leite define and use relationships between
scenarios (overlap, equivalence, and subset) to classify and
guide the evolution of scenarios [28]. Their definition of
scenario equivalence is ‘‘when two scenarios share the same
episodes, involve the same actors, but handle different
restrictions and exceptions’’. Alspaugh et al., discuss the
importance of dependency relationships between scenarios,
and their preservation as the scenarios evolve [6].

Glossaries are needed wherever specialized terms are
used, or wherever terms are used with meanings more spe-
cific than in their ordinary usage. Their use in technical
writing is widespread, indeed almost universal. In the area
of requirements engineering, glossaries are widely used and
their benefits are generally recognized. We cite a few
researchers here in illustration. Heitmeyer et al., discuss
the use of glossaries (among other techniques) in the con-
sistency checking of requirements specifications [38]. Wei-
denhaupt et al., state that glossaries add a common
understanding of terms used in scenarios [63].

7. Lessons learned and future work

In this paper, we have presented an approach for sup-
porting more effective work with scenarios. This approach
is based on the fact that there are aspects of scenarios that
have an implicit structure and meaning and these can be
the basis for automated tool support. Using tools to do
tedious, exacting, or uninteresting tasks helps eliminate
human errors by releasing people to concentrate on more
interesting work for which human intelligence is essential
and most valuable. The result is scenarios that more effec-
tively explore the space of possibilities, more accurately
convey the stakeholders’ and analysts’ understanding,
needs, and tradeoffs, and more effectively highlight the
requirements issues that can and should be resolved in
terms of requirements rather than being left for developers
to sort out in subsequent phases. The resulting improve-
ment in well-definedness, coverage, minimality, and coher-
ence of scenarios are crucial because they increase the
likelihood that development projects using them will finish
in a reasonable time (or at all) and produce software that
meets its stakeholders’ needs.

We have validated our approach by persuasion (to use
Shaw’s terminology [58]), presenting arguments in support
of the improvements in scenario quality that can be expect-
ed from using our approach; by implementing part of the
approach in the SMaRT tool; and by evaluating our
approach in the context of two studies on scenarios for
two different kinds of systems, in two distinct contexts
and with scenarios of two different levels of quality. The
validation has provided support for our claims that our
approach can produce equivalent or better results than
ordinary manual practice, and (with automated support)
can do so faster and with fewer errors; that it improves sce-
nario quality by providing useful analyses impractical to do
by hand; and that is supports greater expressiveness that
can be used to improve coverage and well-definedness.
The studies show that our approach produces improve-
ments both in good, thoroughly-reviewed scenarios and
in scenarios whose quality is not sufficient to support effec-
tive development. In short, our approach is effective in sup-
porting analysts as they bring initially inadequate scenarios
up to the level of quality essential for developing satisfacto-
ry software in a reasonable time, and as they analyze and
improve scenarios that are already of good quality.

Our future work includes implementing tool support for
the parts of our approach not supported by SMaRT, and



T.A. Alspaugh, A.I. Antón / Information and Software Technology 50 (2008) 198–220 219
repackaging its components for incorporation into several
software tools other than a single standalone scenario tool.
We are extending our model of scenario structure and
meaning so that it supports some logical extensions of stan-
dard scenarios and additional uses of scenarios for tasks
not now common. One such extension is to incorporate
temporal relations besides sequence and concurrency into
scenarios. We are examining the use of such formalisms
as Allen’s interval algebra [3] and partial orderings of
events [10,12]. Another is to combine individual scenarios
in order to produce a stronger or more expressive compos-
ite specification. Some additional uses of scenarios are in
support of more effective testing, and as a basis for interac-
tions in computed social worlds. We are looking into using
scenarios as the basis for tracing tests to and from stake-
holder requirements, and for evaluating test results more
efficiently by incorporating knowledge about goals and
plans into testing. We plan to extend the evaluation of
our work by using stakeholders and analysts other than
the authors to evaluate the results, and by comparing the
effectiveness and efficiency of using SMaRT to the effective-
ness and efficiency of a comparable software tool.
Acknowledgements

The authors thank Aldo Dagnino of Asea Brown Bove-
ri, BellSouth Telecommunications, and the anonymous ref-
erees of a previous submission of this paper. This work was
supported by NSF CAREER Award #9983926 and Bell-
South Telecommunications CACC Grant #5-30092.

References

[1] T.N. Al-Otaiby, W.P. Bond, and M. AlSherif, Sotware modular-
ization using requirements attributes, in: ACM-SE 42: Proceedings
of the 42nd annual Southeast regional conference, 2004, pp. 104–
109.

[2] I. Alexander, Introduction: scenarios in system development, in: I.F.
Alexander, N. Maiden (Eds.), Scenarios, Stories, Use Cases: Through
the Systems Development Life-Cycle, Wiley, 2004, pp. 3–24.

[3] J.F. Allen, Maintaining knowledge about temporal intervals, Com-
munications of the ACM 26 (11) (1983) 832–843.

[4] T.A. Alspaugh and A.I. Antón, Scenario networks: A case study of
the enhanced messaging system, in: REFSQ’01: Requirements Engi-
neering: Foundation for Software Quality, 2001, pp. 113–124.

[5] T.A. Alspaugh and A.I. Antón, Contrasting use case, goal, and
scenario analysis of the Euronet system, in: RE’03: 11th International
Conference on Requirements Engineering, 2003.

[6] T.A. Alspaugh, A.I. Antón, T. Barnes, and B.W. Mott, An integrated
scenario management strategy, in: RE’99: Fourth International
Symposium on Requirements Engineering, 1999, pp. 142–149.

[7] T.A. Alspaugh, A.I. Antón, and L.J. Davis. An empirical study of
scenario similarity measures, ISR Technical Report UCI-ISR-03-07,
Institute for Software Research, University of California, Irvine, 2003.

[8] T.A. Alspaugh, D.J. Richardson, T.A. Standish, and H. Ziv,
Scenario-driven specification-based testing against goals and require-
ments, in: REFSQ’05: Requirements Engineering: Foundation for
Software Quality, 2005, pp. 187–202.

[9] Thomas A. Alspaugh, Scenario networks and formalization for
scenario management, PhD thesis, North Carolina State University,
Raleigh, NC, September 2002.
[10] Thomas A. Alspaugh, Relationships between scenarios, Technical
Report UCI-ISR-06-7, Institute for Software Research, University of
California, Irvine, May 2006. Revised Dec. 2006.

[11] Thomas A. Alspaugh, Annie I. Anton, and Abdi Modarressi,
Enhanced Messaging System scenarios, July 2001. http://www.ics.u-
ci.edu/~alspaugh/EMSscos-public.html.

[12] Thomas A. Alspaugh, Susan Elliott Sim, Kristina Winbladh, Mama-
dou Di-allo, Hadar Ziv, and Debra J. Richardson, The importance of
clarity in usable requirements specification formats, Technical Report
UCI-ISR-06-14, Institute for Software Research, University of
California, Irvine, September 2006.

[13] A.I. Antón, Ryan A. Carter, Aldo Dagnino, John H. Dempster,
Devon F. Siege, Deriving goals from a use-case based requirements
specification, Requirements Engineering Journal 6 (1) (2001) 63–73.

[14] A.I. Antón, C. Potts, A representational framework for scenarios
of system use, Requirements Engineering Journal 3 (3-4) (1998)
219–241.

[15] A.I. Antón and C. Potts, The use of goals to surface requirements for
evolving systems, in: ICSE ’98: 20th International Conference on
Software Engineering, 1998, pp. 157–166.

[16] Annie I. Antón, Goal Identification and Refinement in the Specifi-
cation of Software-Based Information Systems, PhD thesis, Georgia
Institute of Technology, Atlanta, GA, June 1997.

[17] Annie I. Antón, Michael McCracken, and Colin Potts, Goal
decomposition and scenario analysis in business process reengineer-
ing, in: Proceedings of the 6th International Conference on Advanced
Information Systems Engineering (CAiSE’94), 1994, pp. 94–104.

[18] Asea Brown Boveri – Electric Systems Technology Institute. Software
requirements specification for Euronet v.2, 1999.

[19] F. Basanieri, A. Bertolino, G. Lombardi, G. Nucera, E. Marchetti, A.
Ribolini, Cow Suite: a UML-based tool for test-suite planning and
derivation, ERCIM News 58 (2004) 30–32.

[20] Camille Ben Achour, Colette Rolland, Carine Souveyet, and Neil A.
Maiden, Guiding use case authoring: Results of an empirical study,
in: Fourth IEEE International Symposium on Requirements Engi-
neering (RE’99), 1999, pp. 36–43.

[21] K. Benner, M.S. Feather, W.L. Johnson, and L. Zorman. Utilizing
scenarios in the software development process, in: IFIP Working
Group 8.1 Working Conference on Information Systems Develop-
ment Processes, 1992.

[22] E. Bertino, G. Guerrini, I. Merlo, and M. Mesiti, An approach to
classify semi-structured objects, in: ECOOP’99: European Conference
on Object-Oriented Programming, 1999, pp. 416–440.

[23] L.J. Bode, A scenario management case study: measuring scenario
similarity in the EMS, Technical Report TR-2002-10, North Carolina
State University, 2002.

[24] B. Boehm, Software engineering, IEEE Transactions on Computers
25 (12) (1976) 1126–1241.

[25] B. Boehm, V.R. Basili, Software defect reduction top 10 list, IEEE
Software 34 (1) (2001) 135–137.

[26] B.W. Boehm, Software Engineering Economics, Prentice-Hall, 1981.
[27] Barry W. Boehm, Verifying and validating software requirements and

design specifications, IEEE Software 1 (1) (1984) 75–88.
[28] K. Breitman and J. Leite, A framework for scenario evolution, in:

ICRE’98: Third International Conference on Requirements Engi-
neering, 1998, pp. 214–223.

[29] K. Breitman, J. Leite, D. Berry, Supporting scenario evolution,
Requirements Engineering Journal 10 (2) (2005).

[30] F.P. Brooks Jr., No silver bullet: essence and accidents of software
engineering, IEEE Computer 20 (4) (1987) 10–19.

[31] A. Cockburn, Writing Effective Use Cases, Addison-Wesley, 2000.
[32] D.W. Cordes, D.L. Carver, Evaluation method for user requirements

documents, Information and Software Technology 31 (4) (1989) 181–
188.

[33] D. Damian, J. Chisan, L. Vaidyanathasamy, Y. Pal, Requirements
engineering and downstream software development: findings from
a case study, Empirical Software Engineering 10 (3) (2005) 255–
283.

http://www.ics.uci.edu/~alspaugh/EMSscos-public.html
http://www.ics.uci.edu/~alspaugh/EMSscos-public.html


220 T.A. Alspaugh, A.I. Antón / Information and Software Technology 50 (2008) 198–220
[34] A.M. Davis, Software Requirements: Analysis and Specification,
Prentice-Hall, 1990.

[35] A.M. Davis, A.S. Zweig, The missing piece of software development,
Journal of Systems and Software 53 (3) (2000) 205–206.

[36] P.A. Gough, F.T. Fodemski, S.A. Higgins, and S.J. Ray. Scenarios –
an industrial case study and hypermedia enhancements, in: RE’95:
Second International Symposium on Requirements Engineering,
1995, pp. 10–17.

[37] P. Haumer, Use case-based software development, in: Ian F.
Alexander, Neil Maiden (Eds.), Scenarios, Stories, Use Cases:
Through the Systems Development Life-Cycle, John Wiley and Sons,
Ltd., 2004, pp. 237–264.

[38] C. Heitmeyer, B. Labaw, and D. Kiskis. Consistency checking of
SCR-style requirements specifications, in: RE’95: Second Interna-
tional Symposium on Requirements Engineering, 1995, pp. 56–63.

[39] I. Jacobson, M. Christerson, P. Jonsson, G. Övergaard, Object-
Oriented Software Engineering: A Use Case Driven Approach, ACM
Press, 1992.

[40] M. Jarke, X.T. Bui, and J.M. Carroll, Dagstuhl workshop on scenario
management, Dagstuhl Seminar Report 199, Schloss Dagstuhl
International Conference and Research Center for Computer Science,
February 1998.

[41] M. Jarke, X.T. Bui, J.M. Carroll, Scenario management: an interdis-
ciplinary approach, Requirements Engineering Journal 3 (3-4) (1998)
155–173.

[42] J.B. Kruskal, An overview of sequence comparison, in: D. Sankoff,
J.B. Kruskal (Eds.), Time Warps, String Edits, and Macromolecules:
The Theory and Practice of Sequence Comparison, Addison-Wesley,
1983, pp. 1–44.

[43] A. van Lamsweerde, L. Willemet, Inferring declarative requirements
specifications from operational scenarios, IEEE Transactions on
Software Engineering 24 (12) (1998) 1089–1114.

[44] D. Lauzon and T. Rose, Task-oriented and similarity-based retrieval,
in: Knowledge-Based Software Engineering Conference, 1994, pp. 98–
107.

[45] E. Letier, J. Kramer, J. Magee, and S. Uchitel, Monitoring and
control in scenario-based requirements analysis, in: ICSE ’05: 27th
International Conference on Software Engineering, 2005, pp. 382–
391.

[46] N.A.M. Maiden, CREWS-SAVRE: scenarios for acquiring and
validating requirements, Automated Software Engineering 5 (4)
(1998) 419–446.

[47] N.A.M. Maiden, S. Minocha, K. Manning, and M. Ryan, CREWS-
SAVRE: Systematic scenario generation and use, in: ICRE’98:
International Conference on Requirements Engineering, 1998, pp.
148–155.

[48] N.A.M. Maiden, A.G. Sutcliffe, Analogical retrieval in reuse-oriented
requirements engineering, Software Engineering Journal 11 (5) (1996)
281–292.
[49] P. Massonet and A. van Lamsweerde, Analogical reuse of require-
ments frameworks, in: RE’97: Third International Symposium on
Requirements Engineering, 1997, pp. 26–39.

[50] J. Natt och Dag, B. Regnell, P. Carlshamre, M. Andersson, and J.
Karls-son, Evaluating automated support for requirements similarity
analysis in market-driven development, in: REFSQ’01: Requirements
Engineering: Foundation for Software Quality, 2001.

[51] S. Park, H. Kim, Y. Ko, J. Seo, Implementation of an efficient
requirements-analysis supporting system using similarity measure
techniques, Information and Software Technology 42 (6) (2000) 429–
438.

[52] C. Potts, Software engineering research revisited, IEEE Software 10
(5) (1993) 19–28.

[53] C. Potts, K. Takahashi, Annie I. Antón, Inquiry-based requirements
analysis, IEEE Software 11 (2) (1994) 21–32.

[54] Requirements engineering journal, 1998. Special Issue: Interdisciplin-
ary Uses of Scenarios.

[55] S. Robertson, Scenarios in requirements discovery, in: I.F. Alexander,
N. Maiden (Eds.), Scenarios, Stories, Use Cases: Through the
Systems Development Life-Cycle, John Wiley and Sons, Ltd., 2004,
pp. 39–59.

[56] C. Rolland, C. Souveyet, C. Ben Achour, Guiding goal modeling
using scenarios, IEEE Transactions on Software Engineering 24 (12)
(1998) 1055–1071.

[57] K. Ryan and B. Mathews, Matching conceptual graphs as an aid to
requirements re-use, in: RE’93: International Symposium on Require-
ments Engineering, IEEE, 1993, pp. 112–120.

[58] M. Shaw. The coming-of-age of software architecture research, in:
ICSE ’01: 23rd International Conference on Software Engineering,
2001, pp. 657–664a.

[59] The Standish Group. The CHAOS report, 1994.
[60] A. Sutcliffe, Scenario-based requirements engineering, in: RE’03: 11th

International Conference on Requirements Engineering, 2003, pp.
320–329.

[61] Ieee transactions on software engineering, December 1998. Special
Issue: Scenario Management.

[62] A. Tversky, Features of similarity, Psychological Review 84 (4) (1977)
327–352.

[63] K. Weidenhaupt, K. Pohl, M. Jarke, P. Haumer, Scenarios in system
development: current practice, IEEE Software 15 (2) (1998) 34–45.

[64] H.G. Woo and W.N. Robinson, Reuse of scenario specifications
using an automated relational learner: a lightweight approach, in:
RE’02: International Conference on Requirements Engineering, 2002,
pp. 173–180.

[65] Didar Zowghi and Vincenzo Gervasi, The 3 Cs of
requirements: Consistency, completeness, and correctness, in:
8th International Workshop on Requirements Engineering:
Foundation for Software Quality (REFSQ ’02), September
2002.


	Scenario support for effective requirements
	Introduction
	Scenarios as requirements
	Four scenario qualities
	Six avenues for automated support
	Roadmap

	Terminology and background
	Terminology
	Scenario structure
	Inter-scenario relationships

	Components of approach
	Glossaries
	Episodes
	Episode reference diagrams
	A compact and informative view
	Identifying dependencies
	Identifying multiple dependencies

	Shared events
	Episode creation
	Working with suffix-prefix overlaps
	Working with shared suffixes or shared prefixes

	Context
	Overlaps
	Pre- and postconditions
	Scenario context diagrams

	Similarity

	SMaRT
	Validation
	Evaluation criteria for the studies
	The EMS study
	Study artifacts
	Lessons learned
	Glossaries help establish a common understanding of terms and concepts
	Scenario context diagrams help uncover missing scenarios and requirements
	Scenario context diagrams help uncover requirements errors
	Scenario context diagrams express when each scenario can occur
	Similarity measures can identify similar scenarios

	Stakeholder feedback
	Discussion

	The Euronet study
	Study artifacts
	Lessons learned
	Glossaries and cross-references support well-definedness
	Glossaries help reduce undesirable ambiguity in the specification
	Standardizing on a relatively small number of important words makes it easier to find the right action and to express the actions effectively
	Episode reference diagrams support well-definedness and coherence
	Episode reference diagrams visually indicates likely problem areas
	Automated episode identification finds duplication that people have not
	Our approach is more effective and efficient than GBRAM goal-based analysis

	Discussion


	Related work
	Lessons learned and future work
	Acknowledgements
	References


