
System architect UML Tutorial 2

Sequence & Collaboration Diagrams
in UML

This material has been abstracted and slightly modified from
the System Architect tutorial File
Robin Beaumont 03/01/2004 14:50

robin@organplayers.co.uk C:\edinburgh\msc unit 6\sa_tut_3_sequence_colab\uml_seq_collab.doc Page 1 of 20

Contents
Contents... 2

1. Introduction Sequence and Collaboration Diagrams... 3

2. Sequence Diagram... 4
1.1. Create Sequence/Collaboration Diagrams... 4
1.2. Finding Objects By Examining Use Case Scenarios ... 4
1.3. Create a Sequence Diagram.. 5

1.3.1. Create the Sequence Diagram .. 5
1.3.2. Drawing an Object Lifeline ... 6
1.3.3. Define the Class... 7

1.4. Adding Additional Objects to the Sequence Diagram .. 9
1.5. Draw Message/Stimulus Lines Between Objects... 10
1.6. Show Object Creation .. 12
1.7. Complete the Sequence Diagram .. 12

1.7.1. Add 'Focus of Control', or Activation Bars ... 13
1.8. Adding a Method to an Message Line.. 14
1.9. Adding a New Method to a Class... 15

3. Collaboration Diagram.. 17
1.10. Create Collaboration Diagram.. 17
1.11. Add a Message to a Link.. 18
1.12. Modify a Message .. 19
1.13. Synchronize Sequence Diagram.. 20

Comments I have added are in red - RB

robin@organplayers.co.uk C:\edinburgh\msc unit 6\sa_tut_3_sequence_colab\uml_seq_collab.doc Page 2 of 20

1. Introduction Sequence and Collaboration Diagrams
Whereas you use Use Cases to gain a high-level business view of what goes on in the system, with the
Sequence diagram you detail the interactions among objects in the system. The Collaboration diagram
offers a different view of the same information as the Sequence diagram. The two are sometimes referred
to as Interaction diagrams. Within the Process Chart that we are using to navigate this tutorial, we are at the
following place, highlighted in bold in the picture below:

Sequence Diagram

Like Use Case diagrams, you use Sequence diagrams to model scenarios in the system. They offer a
different level of detail, however. Whereas Use Cases and the steps or textual descriptions that define them
offer a high-level-analysis view of a system, the Sequence diagram offers more specific analysis and design
information about the interactions among objects in the system.

In a Sequence diagram, an object appears on the diagram as a vertical dashed line with the name of the
object at the top and the name of the object's class optionally drawn below the object name. Events appear
as horizontal lines between objects. Event lines are drawn in chronological order, from the top of the
diagram to the bottom. They do not necessarily have a one-to-one correspondence with the steps defined
for a Use Case scenario.

Collaboration Diagram

The Collaboration diagram shows how the objects in a scenario interrelate. In a Collaboration diagram, the
modeler can show detail such as visibility.

Each object in a Collaboration diagram instantiates a particular class in the system. The objects are
connected by links, each link representing an instance of an association between the respective classes.
The link shows messages sent between the objects, and the type of message passed (synchronous,
asynchronous, simple, balking, and timeout).

robin@organplayers.co.uk C:\edinburgh\msc unit 6\sa_tut_3_sequence_colab\uml_seq_collab.doc Page 3 of 20

For the modeler trying to understand all of the effects on a given object, Collaboration diagrams offer a
better view of a scenario than a Sequence diagram. Collaboration diagrams are therefore good for
procedural design.

Keeping the Diagrams in Synch

To show the implementation details of a scenario, you can choose to draw either a Sequence or a
Collaboration diagram, or both. System Architect automatically creates a Collaboration diagram from a
Sequence diagram, and vice versa, when you invoke the Synchronize Diagram command from the Draw
menu.

2. Sequence Diagram
The completion time of this section is approximately 60 minutes.

1.1. Create Sequence/Collaboration Diagrams
Sequence/Collaboration Diagrams

In this section of the tutorial, we will create a Sequence diagram. In UML, you model a Sequence and
(optionally) a Collaboration diagram for every scenario in the system.

Our first task is to find the objects, classes, and messages of the system. To do this, we'll examine the
description of the Use Case. If you have modeled the description of the Use Case as a sequence of steps
(as we have done in this tutorial), then you can ‘walk through’ the steps to discover what objects are
necessary for the steps to occur.

1.2. Finding Objects By Examining Use Case Scenarios
The Use Case technique has become a popular vehicle for finding objects during an object-oriented
analysis of a system. After modeling the scenarios for the way a system works or should work, you can then
examine those scenarios to find the objects necessary for the scenarios to take place.

Examine Nouns and Verbs

One way to find objects is to examine the textual description or steps of every Use Case. Consider nouns in
the textual description to be classes or class attributes and verbs to be methods of the classes.

For example, in the Make Reservation Use Case, in order for a Customer to request a reservation, two
objects are necessary: Customer and Reception. In order for the step Check Diary for Room Availability to
occur, the objects Room and Diary must exist. In order for the step Customer accepts accommodation to
occur, the objects Customer and Room must exist, etc. Looking at the steps of Make Reservation, we
highlight possible objects in bold, possible class attributes in bold underline, and possible methods in italic.

1. Customer Queries for Available Rooms
2. Store Customer Details
3. Check Diary for Room Availability
4. Room is Available
5. Advise Customer of Availability
6. Customer Requests Reservation
7. Provisionally Book Room
8. Figure Out Price, Advise Customer
9. Customer Accepts Terms
10. Provisionally Book Room
11. Check Customer Credit
12. Customer Credit Is OK
13. Reserve Room.

robin@organplayers.co.uk C:\edinburgh\msc unit 6\sa_tut_3_sequence_colab\uml_seq_collab.doc Page 4 of 20

Important: Before you begin this tutorial make sure you have the
Tutorial encyclopaedia open (see the previous tutorial for details).

1.3. Create a Sequence Diagram
Let's model this scenario with a Sequence diagram. We will create a Sequence diagram, and make it a
child of the Use Case diagram we created in the earlier tutorial. This will create a hypertext link between the
two diagrams. For this tutorial, our Use Cases were in the Business Use Case View package. We will build
our Sequence diagrams in a Reservation System package within the Logical View package.

1.3.1. Create the Sequence Diagram

To create a Sequence diagram:

1. In the UML tab of the browser, click on the + mark next to the Logical View package to expand it,
revealing the Reservation System package underneath it.

2. Right-mouse click on the Reservation System package and select New to open the Select New
Type for UML dialog.

3. Within the Diagrams list, double-click on Sequence to create a new Sequence diagram.
4. Type in Make Reservation in the New Diagram dialog.
5. Another dialog box will appear asking which Package you wish the diagram to belong to – accept

the default value and hit the OK button

robin@organplayers.co.uk C:\edinburgh\msc unit 6\sa_tut_3_sequence_colab\uml_seq_collab.doc Page 5 of 20

1.3.2. Drawing an Object Lifeline

In a Sequence Diagram, an object is shown as a long, vertical, dashed line. This is considered the object
lifeline. It represents the life of an object during a scenario. We
discovered above that the objects Customer, Reservation, Room, and
Diary are needed for the Make Reservation scenario. Let's model them.

1. Select the object symbol from the toolbar and place an object
symbol down on the diagram. The Symbol - Object (name)
dialog appears.

2. In the Name field, type in the name acustomer, and in the
Class - (Class) field, type in the name Customer. (We can
define the class at this point, but we won't. Let's draw the object
first and then go back and define the class.)

You are specifying the object name, and the class that this object instantiates. T
a different class than the one we modeled as an actor in the Use Case of the
Reservations package of the previous section. We are purposely separating
business classes from logical classes. We could have used the same class
(by clicking on the Choices button and dragging it in, or modeling this
Sequence diagram in the same package as the Use Cases). This is a design
decision we have made.

his class, Customer, is

3. Click OK to close the dialog. The object lifeline is drawn on the diagram.

robin@organplayers.co.uk C:\edinburgh\msc unit 6\sa_tut_3_sequence_colab\uml_seq_collab.doc Page 6 of 20

1.3.3. Define the Class

Let's go back and define the class of the object we just drew.

1. Double-click on the object lifeline symbol to open its definition dialog.
2. Click the Define button in the Class - (Class), Customer field. Let's take a look at its definition.

Adding Class Attributes

A class Customer may have many attributes associated with it, for example, Social Security Number, email,
age, sex, height, weight, etc. Although many such attributes may immediately come to mind, you must be
careful to add only those attributes that are relevant to your design. For example, to make a hotel
reservation, we might also want the customer to provide the Credit Card Number that they will be charging.
If it were a reservation over the Internet, we might require a return email address. At this point it would be
hard to defend why we would need their Social Security Number or their Height and Weight for them to
make a reservation.

Let's add the attribute Credit Card Number to the Customer class. To add an attribute to the class:

3. Within the class definition, with the Attributes tab selected, place your cursor in the next empty cell
of the Attributes grid, type name and hit your Enter key.

4. In the Type cell, hit the 'c' key on your keyboard to quickly select the char type for this
attribute.[Note (RB): I found that this shortcut did not work I needed to enter the whole word’char’ or
select it from the drop down list box]

Let's add a few more attributes. We'll add the attributes first, then go back and specify a type for each one.

robin@organplayers.co.uk C:\edinburgh\msc unit 6\sa_tut_3_sequence_colab\uml_seq_collab.doc Page 7 of 20

5. Add the following attributes to the grid, hitting your Enter key after each one to enter it:

address
telNo
faxNo
Credit_Card_Number

Note: When typing in the name of an attribute, you may elect to put spaces in between words
(embedded spaces). For example, you could have specified the last attribute added above as
Credit Card Number. This is completely okay during analysis. However, most implementation
languages (i.e., Java, C++) do not allow embedded spaces in attribute or method names. In
this tutorial we will not be changing the name of this attribute later during design, so we did not
use embedded spaces in the name.

6. Specify each attribute as type char.

7. Click OK twice to close all dialogs.

robin@organplayers.co.uk C:\edinburgh\msc unit 6\sa_tut_3_sequence_colab\uml_seq_collab.doc Page 8 of 20

1.4. Adding Additional Objects to the Sequence Diagram
So far we have added the object aCustomer (instantiating the class Customer) to the Sequence diagram.
Now let's add the other objects that we found in the steps of the Make Reservation Use Case: Reception,
Reservation, Diary, and Room.

To add the object Reception, we will use a different technique
than that used previously - we will reuse the class Reception of
the package Reservation System that has been preloaded into
this project encyclopedia (to make taking the tutorial faster).

1. Right-mouse click on the Sequence diagram workspace,
and select Choices. You can view a list of classes and
objects already established in this encyclopedia

2. Select the Reception."Reservation System" class and
drag and drop it onto the diagram workspace. Note that
there are two Reception classes -- the Reception actor of
the Reservations package that we created earlier, [during
the Use Case tutorial if you saved it! RB] and a Reception
class of the Reservations System package. Make sure
you drag this latter one onto the diagram workspace. An
object Reception, instantiating the class Reception, is
created. Close the Select and Drag dialog.

3. Position the object Reception so that it is parallel to the first object drawn, Customer.

robin@organplayers.co.uk C:\edinburgh\msc unit 6\sa_tut_3_sequence_colab\uml_seq_collab.doc Page 9 of 20

We will now add two more instances of classes in the same manner:

Moving Objects on a Sequence Diagram and Diagram Grid Options: By default, the
Sequence diagram employs an invisible, horizontal grid that you draw and move symbols on.
You may change the flexibility of this grid, or turn it off altogether, by selecting Format,
Diagram Format, Grid and Reduced View. If you want to see the grid on the diagram
workspace, select Format, Diagram Format, Display Options, and in the Display Options
dialog, toggle on Show Grid. We will not show the grid in this tutorial.

• Diary
• Reservation [RB]

4. Right-mouse click on the diagram workspace and select Choices. From the Select and Drag

dialog, drag and drop Diary."Reservation System"

5. Repeat the process to drag and drop Reservation."Reservation System" onto the diagram. Close
the Select and Drag dialog. Position the two objects in parallel to the other object lifelines to end
up with something like this:

It is rather confusing to have an instance (‘object) of a class given the same name as the Class such as
Reception:Reception. I try to use a name that indicates it is a (single) instance for example “acustomer”
representing a Customer similarly it probably would be best to have the instance of the Reception class
called TheReception or something similar. RB

1.5. Draw Message/Stimulus Lines Between Objects
Message/Stimulus lines are drawn between objects to show how and when they communicate. These lines
(which we'll refer to simply as message lines) are drawn chronologically from the top of the Sequence
diagram to the bottom.

The message line represents a message sent from one object to another, in which the 'from' object is
requesting an operation be performed by the 'to' object. The 'to' object performs the operation using a
method that its class, or one if its superclasses, contains. Later in this tutorial, we will specify the method
that a 'from' object is requesting the 'to' object to invoke. First, let's concentrate on the messages passed
between the objects:

robin@organplayers.co.uk C:\edinburgh\msc unit 6\sa_tut_3_sequence_colab\uml_seq_collab.doc Page 10 of
20

1. Select the Message/Stimulus tool from the toolbox and
draw a message/stimulus line, starting at the object
Customer and ending at the Reception object. When
attaching the Event line to an object lifeline, make sure that you see a + mark on the intersection.
This will tell you that the lines are connected. Name the line Query for Available Rooms and
press Enter.

Reception responds to the event Query for Available Rooms by performing an action: it must check the
Diary for room availability.

2. Draw a message line from the
Reception object to the Diary object.
Name it Check Room Availability.
We will not model the return message
from Diary back to Reception -- we
will leave it implied.

3. Draw a message line from the
Reception object to the Customer
object and name it Room Available.

The Customer may now request to reserve the room (we are assuming the Customer already knows the
price per night of a room; perhaps this is information provided on the website, or perhaps we've missed this
detail and should add it later to our Sequence Diagram). Reception will provisionally book the room in the
Diary, which will cause the Reservation to be created. (In this way, no one else can reserve the room out
from under this customer while Reception is asking for the Customer to provide a credit card -- an
embarrassing situation.

4. Draw a message line between Customer
and Reception named Request
Reservation.

5. Draw an event line between Reception and
Diary named Provisionally Book Room.

6. Increase the length of the first three object
lifeline symbols (all but Reservation), by
selecting the symbol and dragging its
bottom handlebar downward.

robin@organplayers.co.uk C:\edinburgh\msc unit 6\sa_tut_3_sequence_colab\uml_seq_collab.doc Page 11 of
20

1.6. Show Object Creation
The UML notation for showing that an object on a Sequence diagram is created is to draw a message line
into the head of the name box at the top of the object lifeline. To show that Reservation is being created in
this scenario, we will move the Reservation object lifeline downward so that we can draw a line into its
header box.

1. Select the Reservation object and move it down on the diagram so that the next line drawn can be
drawn into its 'header box'.

2. Draw a message line from Diary to the header box of Reservation and name it Create
Reservation.

1.7. Complete the Sequence Diagram
The Reservation object will compute its price and notify Reception, which will advise the Customer (Diary
is not involved in this pricing process). If the Customer accepts the terms, he/she notifies Reception,
which reserves the room in the diary. Diary updates the Reservation status to Reserved.

1. Draw a message line between Reservation and Reception and name it Indicate Total Price.

2. Draw a message line between Reception and Customer and name it Advise Customer.

3. Draw a message line between Customer and Reception and name it Accept Terms.

4. Draw a message line between Reception and Customer and name it Request Credit.

5. Draw a message line between Customer and Reception and name it Provide Credit Card.

6. Draw a message line between Reception and Diary and name it Reserve Room.

The Sequence diagram should now look like the diagram pictured below.

robin@organplayers.co.uk C:\edinburgh\msc unit 6\sa_tut_3_sequence_colab\uml_seq_collab.doc Page 12 of
20

Note: We might also want to send a message from Reception to another object in the system
or outside the system to check the customer's credit before reserving a room. We will not do
this in our example tutorial to keep it simple; let's assume the client's credit is checked when
he/she confirms the room.

1.7.1. Add 'Focus of Control', or Activation Bars

A focus of control rectangle, or activation bar, is drawn on an object lifeline to show the period during which
the object is performing an action. The activation bar represents both the duration of the action in time and

the control relationship between the activation and its callers. The terms 'focus of
control' and 'activation bar' are interchangeable.

1. Select the Focus of Control tool on the toolbox, and drop
one onto the Customer object lifeline. Notice that you can
only drop a Focus of Control bar onto an object lifeline symbol. System
Architect does not allow you to drop it onto empty diagram workspace.

2. Choose the Select Mode pointer from the toolbox (or hit your Esc key) to get
back your pointer. Select the Focus of Control bar, and drag on its bottom
and top handlebars so that it covers the object lifeline at all points where it
sends or receives a message.

3. Repeat steps 1 and 2 for the other object lifelines on the diagram. Your
diagram should look like the one pictured below.

robin@organplayers.co.uk C:\edinburgh\msc unit 6\sa_tut_3_sequence_colab\uml_seq_collab.doc Page 13 of
20

1.8. Adding a Method to an Message Line
When one object sends a message to another object, it is in essence asking it to do something. The object
receiving the message must be able to perform this task and return an answer to the sending object. The
receiving class performs an operation - it uses a specific method to perform this operation. This method can
be represented in a programming language such as Java or C++ or Visual Basic, etc.

On the Sequence diagram, you can specify what method is 'invoked' by the sending of a message from one
object to another. The method invoked belongs to the class that the receiving object instantiates. In System
Architect you may specify what method is associated with each message within the definition of the line.
This method should become part of the 'to' class definition, or the definition of a superclass of the 'to' class.

At an early stage of analysis, you would normally not spend too much time figuring out the methods
invoked; this would be performed at a later stage of design, when we would return to this diagram. For
time's sake, in this tutorial, we will add methods at this point.

Let's model the following: when Reception sends the message Check Room Availability to the object
Diary, the method getAvailability is invoked. To reserve the accommodation, we need a start date, the
duration of the stay, and the room type. These will be parameters of the method.

1. Open the definition of the message line Check Room Availability that is sent from the object
Reception to the object Diary. (To open the definition, double-click on the line or right-mouse click
on it and select Edit.)

2. In the definition dialog, select the Choices button for the Methods property. The Select and Drag
dialog will open, providing you with a list of all methods of the target class, Diary. Notice these are
only methods for the class Diary (the System Architect notation is to put the method name (with
parameters in parenthesis), a period, and the class name.

3. Select the method getAvailability(Date, Duration, roomType).Diary and, holding your left mouse
button down, drag it into the Methods field. Close the Select and Drag dialog.

robin@organplayers.co.uk C:\edinburgh\msc unit 6\sa_tut_3_sequence_colab\uml_seq_collab.doc Page 14 of
20

4. Once you drag the method into the Operations field, you may optionally click on the Define button
to view the full method definition.

5. Click OK to close the Message line definition dialog. You will notice that the name of the method
has been added to the diagram, under the Message line.

6. Let's turn off the display of the method name -- right-mouse click on the line and select Display
Mode to open the Display Mode dialog. Toggle off Method and click OK.

1.9. Adding a New Method to a Class
Next, let's add the method invoked by the message Provisionally Book Room that is sent from Reception
to Diary. The method will request details (possess parameters) about the date and the room type. Let's first
add this method to the Diary class:

1. Open the definition of the Diary object lifeline (right-mouse click and select Edit or double-click on
the symbol).

2. In the Definition tab of the definition dialog, click on Define next to Class - (Class) Diary to open
the class's definition.

3. Within the class Diary's definition dialog, click on the Methods tab. You will notice there are
already a number of operations defined for Diary, but no method to book a room. We will add a
new method.

4. Cursor to the bottom of the Methods grid and type in bookRoom in the Name cell. Click the
Define button. This opens the methods definition dialog box entitled ‘Dictionary object – method –
bookroom’.

5. Within this dialog box, that is method's definition dialog box, select the Formal Parameters tab. In
the Parameters grid, type in date and press Enter. In the Type cell select char.

6. Type in a second parameter, roomType, and specify the type as char.

robin@organplayers.co.uk C:\edinburgh\msc unit 6\sa_tut_3_sequence_colab\uml_seq_collab.doc Page 15 of
20

7. Click OK to close the method definition dialog, and OK again to close the class definition dialog.
And again to close the object definition dialog, by which time you will have closed all the dialog
boxes.

.

8. Open the definition of the message line Provisionally Book Room that is sent from the object
Reception to the object Diary.

9. Click on the Choices button for the Methods property. The Select and Drag dialog will open,
providing you with a list of all methods of the target class, Diary.

10. Select the method bookRoom(date, roomType)."Reservation System".Diary and, holding your
left mouse button down, drag it into the Methods box. Close the Select and Drag dialog and click
OK to close the other dialog box.

You may want to see what all the above work has actually achieved to get some idea you can turn on again
the display of methods on message lines.

You do this by right-mouse clicking on any message line, select Display Mode to open the Display Mode
dialog and Toggle on Method and click OK. The result is shown below.

robin@organplayers.co.uk C:\edinburgh\msc unit 6\sa_tut_3_sequence_colab\uml_seq_collab.doc Page 16 of
20

3. Collaboration Diagram

The completion time of this section is approximately 15 minutes.

1.10. Create Collaboration Diagram
The Collaboration diagram is an alternative to the Sequence diagram for modeling the scenarios in your
system. Although Sequence diagrams make it easier to see the chronological flow of events, collaboration
diagrams enable you to show links between objects, attribute values, and visibility.

Let's have System Architect automatically build a Collaboration diagram for us.

1. With the Sequence diagram open and in focus, select Draw, Synchronize Diagram. System
Architect will build a Collaboration diagram and, once completed, presents you with a message,
The Sequence and Collaboration diagrams have been synchronized. Click OK. The diagram
should look similar to the one below. I have moves the various objects around to make the picture
clearer.

I find these diagrams useful in visualising what I call informally ‘foci’ for example from the above you can
clearly see the importance that the Reception plays and possibly how you might want to either accept this
situation or think of ways of reducing it’s importance?

robin@organplayers.co.uk C:\edinburgh\msc unit 6\sa_tut_3_sequence_colab\uml_seq_collab.doc Page 17 of
20

1.11. Add a Message to a Link
Let's add a new step, modelled as a message to this Collaboration diagram and its sister Sequence
diagram.

1. Right-mouse click on the link line between Diary and Reservation and select Associative... from the
drop-down menu.

2. The Link dialog opens. Press the New button and in the Sequence box, enter 13 (this is the next step
on the diagram).

3. Type in Update Status to
Reserved in the
Message/Stimuli box.

4. From the Synchronize drop-
down list box, select
Asynchronous as the
synchronization type. This is
an asynchronous message -- it
could happen at any time;
opposite of this would be a
synchronous message, which
happens a preset time after t
previous step.

he

5. Click on the Add button.

6. Click OK to close the dialog.

View the diagram and note the
changes that you have made in the
Collaboration diagram -- a new
message appears on the link
between Diary and Reservation.
The asynchronous message
Update Status to Reserved has a symbol next to it that appears as an arrow with a half arrowhead. This is
the UML notation for an asynchronous message.

This is
important
remember
it! RB

robin@organplayers.co.uk C:\edinburgh\msc unit 6\sa_tut_3_sequence_colab\uml_seq_collab.doc Page 18 of
20

1.12. Modify a Message
To modify a message attached to a link:

1. Right-mouse click on the link line between Reception and Customer and select Associative...
from the drop-down menu to open the Link dialog.

2. Click on Message/Stimuli 1, Query for Available Rooms, in the Message/Stimuli list box.

3. From the Synchronize drop down list box, select Asynchronous.

4. Click Replace.

5. Click OK to close the dialog.

Note: that on the diagram, Query for Available Rooms now has an asynchronous arrow next to it.
Because the diagram is crowded, you may need to move message groups around to make the diagram
neater.

robin@organplayers.co.uk C:\edinburgh\msc unit 6\sa_tut_3_sequence_colab\uml_seq_collab.doc Page 19 of
20

1.13. Synchronize Sequence Diagram
To synchronize the Sequence diagram to include the changes you have made:

1. Select Draw, Synchronize Diagram. A dialog box will appear warning you of possible effects –
ignore it.

2. Looking at the revised sequence diagram note that the event line Update Status to Reserved has
been added between the objects Diary and Reservation, with appropriate synchronization
notation. Also the event line for Query for Available Rooms has changed to an asynchronous
notation. The only thing you need to tidy up is to adjust the length of the activation lines for possibly
the Diary and Reservation objects.

Remember to save your work – If you can’t remember how to do this have at look at the end of the last
tutorial.

END OF TUTURIAL

robin@organplayers.co.uk C:\edinburgh\msc unit 6\sa_tut_3_sequence_colab\uml_seq_collab.doc Page 20 of
20

	Introduction Sequence and Collaboration Diagrams
	Sequence Diagram
	Create Sequence/Collaboration Diagrams
	Finding Objects By Examining Use Case Scenarios
	Create a Sequence Diagram
	Create the Sequence Diagram
	Drawing an Object Lifeline
	Define the Class

	Adding Additional Objects to the Sequence Diagram
	Draw Message/Stimulus Lines Between Objects
	Show Object Creation
	Complete the Sequence Diagram
	Add 'Focus of Control', or Activation Bars

	Adding a Method to an Message Line
	Adding a New Method to a Class

	Collaboration Diagram
	Create Collaboration Diagram
	Add a Message to a Link
	Modify a Message
	Synchronize Sequence Diagram

