

Object-Oriented Technology
By Tsang, Lau & Leung 2005 Mcgraw-Hill 2005

Chapter 3 - Use case Modeling and Analysis

Overview 73
Requirement elicitation 74
Use Case Modeling techniques 75
Use Case Modeling examples 80
Use Case Analysis Techniques 81
Use Case Modeling and Analysis Process 94
Tricks & Tips in using Use Case Analysis 109
Use Case Modeling and Analysis with VP-UML 113
Summary 147
Exercise 147

Chapter 3: Use Case Modeling and Analysis 73

73

Chapter

3
Use Case Modeling and Analysis

Overview
The software development process is time-consuming and labor-intensive.
The seemingly straightforward, but deceptively difficult, part of this process is
to clearly understand and specify the requirements that an application must
satisfy. Because of the reiterative nature of the software development process,
mistakes made in early stages but are only identified at a much later stage will
result in costly reworks and delays.

Use case modeling is an increasingly popular approach for identifying and
defining requirements for all kinds of software applications as it is a formalized
process for capturing system scenarios. While use case modeling is often
associated with and used extensively in projects that utilize the object-oriented
approach, it can also be applied to any project regardless of the underlying
implementation technology or development approach.

This chapter provides a thorough presentation of the use case modeling
approach to software requirements elicitation, including practical, proven
techniques that can be immediately applied to software development projects.

What You Will Learn
On completing the study of this chapter, you should be able to:

• state the components of a use case model
• describe how use case models help address common requirements definition

problems
• apply a step-by-step approach to develop use cases

74 Object-oriented Technology

• document use cases
• incorporate use case modeling into the project life cycle

Requirements Elicitation
A requirement describes a condition or capability to which a system must
conform. Requirements are supposed to represent what the system should do as
opposed to how the system should be built. They are either derived directly
from user needs or stated in a contract, standard, specification or other formally
imposed document.

Requirements elicitation is the process of defining your system. It involves
obtaining a clear understanding of the problem space, such as business
opportunities, user needs or the marketing environment, and then defining an
application or system that solves that problem.

Common Problems in Defining Requirements
Numerous studies showed that over half of software development projects do
not work, the major reason being that they do not do what the users actually
want, suggesting that there is a breakdown in the requirements elicitation
process. DeMarco and Lester (1999) observe that “ill-specified systems are as
common today as they were when we first began to talk about Requirements
Engineering twenty or more years ago.”

Traditionally, requirements specified in software requirements
specifications are simple declarative statements written in a text-based,
natural-language style (e.g. “when the user logs in, the system displays a splash
screen as shown in Figure X”). Developers always use typical scenarios
provided in the specifications to try to understand what the requirements of a
system mean and how a system is supposed to behave. Unfortunately, software
requirements specifications are rarely documented in an effective manner.
Use cases are a useful technique for formalizing this process of capturing
scenarios.

Use Case Modeling for Requirements Elicitation
A use case is a sequence of transactions performed by a system that produces
a measurable result for a particular actor. (An actor represents a role played by
a person or a thing that interacts with a system.) A use case consists of a series
of actions that a user must initiate in the system to carry out some useful work
and to achieve his/her goal. Use cases reflect all of the possible events in the
system in the process of achieving an actor’s goal.

Chapter 3: Use Case Modeling and Analysis 75

As mentioned before, the major difficulty in defining system requirements
is that very often it is not known what the users actually want. A good use case
must represent the point of view of the people who will use or interact with the
system; in other words, use cases must describe the behaviors expected of a
system from a user’s perspective. A complete set of use cases specifies all the
possible ways the system will behave, and therefore defines all the
requirements (behaviors) of the system, binding the scope of the system. A use
case should be considered as a unit of requirement definition or simply a user
goal, such as deposit money or check balance in an automatic teller machine
(ATM) system.

In the requirements elicitation process, it is important to correctly identify
a set of use cases to discover the real user requirements of the system being
developed.

Use Case Modeling Techniques
Use case modeling is the process of describing the behavior of the target system
from an external point of view. A use case describes what a system does rather
than how it does it. Therefore, use case analysis emphasizes on modeling the
externally visible view and not the internal view of the system. Use case
analysis allows the designer to focus on the requirements of the system, rather
than on its implementation.

A use case diagram enables the system designer to discover the
requirements of the target system from the user’s perspective. If the designer
utilizes use case diagrams in the early stages of system development, the target
system is more likely to meet the needs of the user. From both the designer and
user’s perspectives, the system will also be easier to understand. Furthermore,
use case analysis is a very useful tool for the designer to communicate with the
client.

What Is Use Case Model?
A use case model is a diagram or set of diagrams that, together with additional
documentation, show what the proposed software system is designed to do.
A use case diagram consists of three main components:

• Actors
• Use cases and their communications
• Additional documentation such as use case descriptions to elaborate use

cases and problem statements that are initially used for identifying
use cases

76 Object-oriented Technology

In addition, a use case diagram may consist of a system boundary.

Actors

Actors are the entities that interact with the system. They include everything
that needs to exchange information with the system. Actors are, therefore, the
entities external to the system being designed.

An actor may be:

• people
• computer hardware and devices
• external systems

An actor represents a role that a user can play, but not a specific user.
An actor, therefore, represents a group of users taking on a particular role.
For example, both John and Peter may be consultants. At the same time,
John may also be a project manager in the company. Thus, the same person
may be an instance of more than one actor, and conversely, several people can
play the same role of an actor.

The common way to identify use cases is to interview the users who will
directly operate the system. This process can help design a system which suits
their needs. However, other stakeholders of the system, such as the customers
and the policy makers of the business process, may be missed out in the vital
stages of development. Consequently, the system may not satisfy the needs of
all stakeholders. For example, consider a general mail order business consisting
of at least three groups of stakeholders: the customer, the staff member who
operates the system and the manager of the company. These stakeholders may
have different requirements of the system:

• The customer requires that the services provided by the company minimize
his time and effort

• The manager wants to maximize the profits of the company
• The staff member hopes to minimize the stock level, bad debts, etc

Obviously, the stakeholders’ requirements may sometimes contradict.
The development team should hold meetings with all stakeholders to determine
all requirements as well as to resolve those that contradict.

Representing Actors

The stick figure is most widely used to represent actors, and it is used even
when the actors are not human. Another way to represent an actor in the UML
notation is a class icon with the <<actor>> stereotype placed above the class
name inside the upper compartment, as shown in Figure 3.1.

Chapter 3: Use Case Modeling and Analysis 77

Figure 3.1. Equivalent UML representations of an actor:
(a) a stick figure and (b) an actor icon

(b)

<<Actor>>
Customer

Customer

(a)

Types of Actors

Actors can be divided into two common types: primary actors and secondary
actors. Primary actors are the main users or entities for which the system is
designed, deriving benefits form it directly.

The following are some key characteristics of primary actors:

• Primary actors are completely outside the system and drive the system
requirements

• Primary actors use the system to achieve an observable user goal

As such, the designer has less flexibility in specifying the roles of the
primary actors in order to satisfy the requirements of the stakeholders.

Secondary actors are users or entities that supervise, operate and manage
the system.

They play a supporting role to facilitate the primary actors to achieve their
goals. The following are some key characteristics of secondary actors:

• Secondary actors often appear to be more inside the system than outside
• Secondary actors are usually allocated many system requirements that are

not derived directly from the statement of requirements

Hence, the designer can have more freedom in specifying the roles of
these actors.

For an example of the roles played by both actors, a tax return can be
submitted directly by a taxpayer (the primary actor) either through the
Internet or by post. If it is the latter, a data entry operator will enter the data
contained in the tax return form to the system. The data entry operator can be
viewed as the secondary actor, as he/she helps the taxpayer process the tax
return form.

There is a less commonly used group of actors called generalization actors.
Generalization is a key concept in object-orientation and object-oriented

78 Object-oriented Technology

modeling, allowing models to be simplified and made more expressive. The fact
that actors are classes means that actors can be generalized. Through the
generalization process, similarities between different actors can be identified.

The UML icon for generalization is a small hollow arrowhead pointing at
the superclass of the actor. For instance, a generic actor, such as System
Designer, can be inherited by other actors, such as System Analyst and Project
Manager. Figure 3.2 shows that the inheriting actors (System Analyst and
Project Manager) also inherit the Use Cases associated with the inherited Actor
(System Designer).

Figure 3.2. Generalization of actors

System Analyst

System Designer

Project Manager

Actors versus Roles

Cockburn (2001) suggests that the word role should be used instead of the word
actor in use case modeling — the word actor could be misinterpreted leading to
confusion. It may be interpreted as an individual or an official rank or a job title
in an organization. None of these meanings match the required definition.
In the use case model, the precise meaning of “actor” should be a set of roles
that can be played by individuals or other external systems. For example, Peter
is an order processing clerk and Raymond a sales manager. Both of them can
process an order. Hence, Peter and Raymond can be actors of the Process Order
use case. We might say that “a sales manager can perform any use case an
order processing clerk can.” More precisely, Order Handler is defined as the role
of processing an order. As such, both Peter and Raymond can play the role

Chapter 3: Use Case Modeling and Analysis 79

Order Handler. Hence, the same person can play different roles at different
times, and staff members with the same job title may play different roles to suit
the needs of the business requirements.

Use Cases

A use case describes a sequence of actions a system performs to yield an
observable result or value to a particular actor. In other words, use cases are
abstractions of dialog between the actors and the system; they describe
potential interactions without going into the details of each scenario.

In the UML notation, a use case is represented by an oval with a label
describing the actor’s goal. A use case is connected to one or more actors using
communication links represented by straight lines. For example, in interacting
with an ATM system, one of the customer goals is to withdraw money from his/
her account. The representation of this requirement in UML is shown in
Figure 3.3.

Figure 3.3. Actor, use case and communication link

Customer

Withdraw Cash

A good use case should

• describe a sequence of transactions performed by a system that produces a
measurable result (goal) for a particular actor

• describe the behavior expected of a system from a user’s perspective
• enable the system analyst to understand and model a system from a high-

level business viewpoint
• represent the interfaces that a system makes visible to the external entities

and the inter-relationships between the actors and the system

System Boundaries

System boundaries define the scope of the system being developed and are
represented by rectangles in the UML notation. All use cases should reside
within the system boundary. The actors are placed outside of the system
boundary and all the use cases collectively make up the total requirements of
the system.

80 Object-oriented Technology

Figure 3.4. A use case model for an ATM system

ATM Banking System

Withdraw Money

Deposit Money

Check Balance System boundary

Use case

System name

Customer

Actor

Communication

Use Case Models: Examples

Example 1: An Automatic Teller Machine System
An ATM system is typically used by different types of users (actors). One type
of user, the customer, operates the ATM to perform transactions with his/her
account(s) through a computerized banking network. The banking network
consists of a central computer connected to all ATM machines and bank
computers owned by individual banks. Each bank computer is used to process
the transaction requested by its customers.

In this example, Customer one is one group of actors for the ATM system.
They operate the ATM to withdraw and deposit money, check the account
balance, etc. We can represent these observable services as use cases.
Figure 3.4 shows a use case diagram for the ATM system.

Example 2: A Hotel Information System
In this example, consider a simple hotel information system for two groups of
customers: Tour Group customers and Individual customers. Tour Group
customers are those who have made advanced reservations through a tour
operator, while Individual customers make their reservations directly with the
hotel. Both groups of customers can book, cancel, check-in and check-out of a
room by phone or via the Internet.

Based on these requirements, there are four observable services as use
cases: Make Booking, Cancel Booking, Check-in a Room and Check-out a Room.
Figure 3.5 shows the use case model for this simple hotel information system.

Chapter 3: Use Case Modeling and Analysis 81

Figure 3.5. A use case model for hotel information system

Hotel Information System

Make Booking

Cancel Booking

Check-in a Room

Check-out a Room

Customer

Individual
Customer

Booking Process Clerk

Reception Staff

Tour Group
Customer

Use Case Analysis Techniques

Conducting Use Case Analysis
During the use case analysis process, the clients and/or the typical users of the
system are usually interviewed. Describing a system’s use case is a useful and
important exercise because it helps to identify redundant or unclear
functionalities. Often, clients may well assume that certain things are obvious
to the interviewer and are surprised when the interviewer seeks further
clarification at length. Similarly, some issues may be obvious to the designers
but the end users may find them baffling, particularly in relation to technical
issues. Use case analysis helps resolve these potential communication problems
(use case analysis will be introduced later in this chapter).

Use case analysis may be helpful in the following areas:

• Discovering new features (requirements). New use cases often help
generate new requirements as the system is analyzed and as the design
takes shape.

82 Object-oriented Technology

• Communicating with clients. Their notational simplicity makes use case
diagrams a mechanism for early discussions with potential users and
domain experts.

• Generating test cases. The collection of scenarios for a use case may also
provide a suite of test cases and a starting point from which the prototype
user interface is shaped. A scenario captures a specific execution of a use
case. In other words, a use case is a generalized description or template of
a sequence of transactions, while a scenario is an instance of the use case
which describes how the use case will be executed in a specific situation.

Summary of UML Notation for Use Case Modeling

Table 3.1. Summary of UML notation

Construct Description Syntax

Use case A sequence of transactions performed by a
system that produces a measurable result
for a particular actor.

Actor A coherent set of roles that users play
when interacting with these use cases.

System The boundary between the physical system
boundary and the actors who interact with the

physical system.

Association The participation of an actor in a use case,
 i.e. an instance of an actor and instances of
a use case communicating with each other.

Generalization A taxonomic relationship between a general
use case and a more specific use case. The
arrow head points to the general use case.

UseCaseName

ActorName

ApplicationName

Chapter 3: Use Case Modeling and Analysis 83

Table 3.1. (Cont’d)

Construct Description Syntax

Extend A relationship between an extension use case
and a base use case, specifying how the
behavior of the extension use case can be
inserted into the behavior defined for the base
use case. The arrow head points to the base
use case.

Include A relationship between a base use case and
an inclusion use case, specifying how the
behavior for the inclusion use case is
inserted into the behavior defined for the
base use case. The arrow head points to the
inclusion use case.

Structuring Use Cases with Relationships
In the process of developing a use case model, it may be discovered that some
use cases share common behaviors. There are also situations where some use
cases are very similar but with additional behaviors. For example, in
Figure 3.6, Withdraw Money and Deposit Money both require the user to login
to the ATM system. In fact, the login step can also be common to other use cases
as well, such as Check Balance. By identifying this common step in the
descriptions of the two use cases, we can avoid duplicating efforts if a change
in the login process is required. This is done by creating a separate use case
called Login Account which can then be shared by other use cases. Figure 3.7
illustrates the results of factoring out the common behavior of the Withdraw
Money and Deposit Money use cases.

The relationship between Login Account, Withdraw Money and Deposit
Money can be expressed using the <<include>> relationship in UML, as shown
in Figure 3.8.

UML supports three types of relationships for use cases: <<include>>,
<<extend>> and generalization. A UML stereotype is a label written within
guillemets (i.e. << >>) denoting some semantic concept which is outside the
basic definition of UML. Using a UML stereotype, the semantics of UML can
be extended to support specific design methods or the needs of the designer.
This mechanism enriches the UML for specific applications without increasing
the complexity within the basic UML notation itself. <<include>> and

<<extend>>

<<include>>

84 Object-oriented Technology

Figure 3.7. Common behavior of two use cases is extracted, named and referenced

Use case: Withdraw Money

Flow of events:

1. include (login)
…
…
…

Use case: Deposit Money

Flow of events:

1. include (login)
…
…
…

Use case: Login Account

Flow of events:

1. The user inserts an ATM card. The system prompts the user to enter a password.
2. The user enters the password. The system validates the user password.

Figure 3.6. Two use cases with a common behavior

Use case: Withdraw Money

Flow of events:

1. The user inserts an ATM card.
The system prompts the user to
enter a password.

2. The user enters the password.
The system validates the user
password.

…
…
…

Use case: Deposit Money

Flow of events:

1. The user inserts an ATM card.
The system prompts the user to
enter a password.

2. The user enters the password.
The system validates the user
password.

…
…
…

Common behavior

<<extend>> are stereotypes for use case relationships. Each of these
relationships is explained in detail below.

Chapter 3: Use Case Modeling and Analysis 85

The <<include>> Relationship

<<include>> relationships are used when two or more use cases share some
common portion in a flow of events. This common portion is then grouped and
extracted to form an inclusion use case to be shared among two or more use
cases. For example, most use cases in the ATM system example, such as
Withdraw Money, Deposit Money or Check Balance, all share the inclusion use
case Login Account (see Figure 3.8).

The <<extend>> Relationship

<<extend>> relationships are used when two use cases are similar, but one does
a bit more than the other. For example, you may have a use case that captures
the typical case (the base use case) and use extensions to describe variations.
A base use case may, therefore, conditionally invoke an alternative use case.
In other words, the extension use case adds an extra behavior to the base use
case. For example, Withdraw Money has an optional behavior which handles
withdrawal of an excess amount. We capture this optional behavior in an
<<extend>> use case (see Figure 3.9).

Figure 3.8. An <<include>> use case: Login Account

<<include>>

<<include>>
Deposit Money

Login Account

Withdraw Money

Figure 3.9. An <<extend>> use case

User <<extend>>

Process Excess Amount

Withdraw Money

86 Object-oriented Technology

The Generalization Relationship

A child use case can inherit the behaviors, relationships and communication
links of a parent use case. In other words, it is valid to put the child use case
wherever a parent use case appears. The relationship between the child use
case and the parent use case is the generalization relationship. For example,
suppose the ATM system can be used to pay bills. Pay Bill has two child use
cases: Pay Credit Card Bill and Pay Utility Bill (see Figure 3.10).

Figure 3.10. A generalization relationship

Customer Pay Utility Bill

Pay Credit Card Bill

Pay Bill

Base Use Case versus Abstract Use Case

Once a set of use cases of the system has been identified, common behaviors
may be found. By extracting their common behaviors, we can form a base case
(concrete use case) and an abstract use case. The former is basically the main
use case which may be instantiated directly by an actor as it can achieve an
observable user goal by itself. The latter can only be instantiated by a base use
case as it only contains a portion of the common behaviors shared among two
or more use cases. Therefore, it is not a complete goal from the user’s
perspective. For example, in Figure 3.8, a use case such as Login Account is not
a use case but an abstract use case (or an <<include>> use case), because
logging into the system does not achieve a complete user goal. A goal is not
achieved if a user goes to an ATM, logs in to the system and then leaves without
making a transaction. Typical operations a user may want to carry out through
an ATM could be Check Balance, Request Check Book or Deposit Money, etc.

A use case may also exhibit several scenarios: the normal scenario and
possible several alternative scenarios. Similarly, the base use case can be used
to represent the normal scenario, while abstract use cases describe the
alternative scenarios.

Chapter 3: Use Case Modeling and Analysis 87

Figure 3.11 shows a part of a use case model for an ATM system. Withdraw
Money is the base use case as it is the normal scenario for the user to
successfully log in to the system, specify the transaction type and input a valid
amount for withdrawal. Process Excess Amount is an abstract use case (or an
<<extend>> use case) as the user may have enough money in his bank account
for the amount that he wishes to withdraw.

Figure 3.11. Extension point in the base use case

User

Withdraw Money

Extension points
Excess Amount

Process
Excess Amount

<<extend>>

Only base use cases may be invoked directly by an actor, while abstract use
cases can only be instantiated by a base use case. The instantiation of an
abstract use case must return to the calling use case (the base use case) at the
exact point from where the call was made. Abstract use cases are composed of
portions extracted from other use cases. Abstract use cases are similar to
subroutine calls, where the base use case likens to a main program. Thus, the
base use case exhibits a complete behavior to achieve a user goal, while an
abstract use case exhibits a partial behavior of a base use case. In the UML
notation, the relationship between a base use case and an abstract use case is
represented by an <<include>> or <<extend>> stereotype. Figure 3.12
illustrates the base use case, Withdraw Money with an optional behavior
represented by the abstract use case, Process Excess Amount. In the figure, the
base use case also includes the extension point (Excess Amount) where a call
to the abstract use case Process Excess Amount can be made.

Notes: Normally similar behaviors of use cases can only be identified and
extracted after they have been completely defined. A designer can then extract
those parts with a similar logic into separate abstract use cases that are used
by other use cases. Abstract use cases are refinements that are of more interest
to the designer than the user.

It is important to note that structuring use cases is unlike developing a flow
chart (deterministic sequence of flow) or a data flow diagram (functional
decomposition) as it focuses on user goals. Thus, Login Account should not be

88 Object-oriented Technology

Documenting Use Cases
A use case focuses on the external aspects of a system and captures the system’s
functional and behavioral requirements that help users perform their tasks.
It, however, does not describe how the system performs the required functional
and behavioral requirements; in other words, it describes what a system is used
for and who uses it without providing details of how the system performs its
functions. A use case description serves as an agreed description between the
user and the system designer on the flow of events when a use case is invoked.
Formally, Booch (1993) defines that “[a] use case is a description of a set of
sequences of actions, including variants, that a system performs to yield an
observable result of value to an actor.”

Figure 3.12. Use case diagram showing <<include>> and <<extend>> relationships

ATM System

User Deposit
Money

Transfer
Money

Login
Account

Process
Excess Amount

Withdraw
Money

<<include>>

<<include>>

<<include>>

<<extend>>

considered as a base use case. This is a common mistake that some designers
make because they incorrectly assume that the user needs to log in to the
system first before he/she can perform tasks such as Withdraw Money or
Deposit Money. Consequently, they wrongly treat Login Account as a base use
case which instantiates Withdraw Money and Deposit Money as abstract use
cases. In fact, the two base use cases should be Withdraw Money and Deposit
Money as they share a common block in the flow of events (the Login Account
inclusion use case).

Chapter 3: Use Case Modeling and Analysis 89

Figure 3.13 conceptualizes that a use case can be elaborated by a use case
description in a more detailed form in that a use case description is explained
and elaborated through scenarios (a sequence of actions). Each of these
scenarios is simply an instance of the use case. In other words, a use case
instance is only a particular example of a use case (a particular system service).
As defined by Booch, a use case not only consists of a normal scenario,
but possibly its variant scenarios. In such cases, they need to be represented in
<<extend>> use cases, where each should be elaborated by a separate use case
description.

Figure 3.13. Use cases and their scenarios

Customer

Instance
scenario

(successfully
withdraws
$250.00)

ATM System

Withdraw
Money

Deposit
Money

Check
Balance

Process
Excess Limit

Login
Account

<<include>>

Withdraw
Money

<<extend>>

For example, the ATM system may provide the Withdraw Money service to
customers in many different scenarios. A typical scenario may involve the
customer withdrawing money from the machine from which he/she has
requested the transaction. In another scenario, the system may report that the
password keyed in by the customer is incorrect, requiring the customer to
re-enter the password.

Developing Base Use Case Descriptions

As a use case diagram is a communication aid between the software designer(s)
and the end user(s), it is important that descriptions are free of computing
jargons and unfamiliar terminologies. Plain, simple language that the user can
relate or understand should be used. Computer or technical terms that are
related to the implementation of the system should be avoided. Indeed, when
constructing a use case diagram, designers should not be thinking about
computers at all; they should be focusing only on the users and system services.

90 Object-oriented Technology

Because the use case model has to be understood by both the users and the
software developer, the base use case descriptions are written in natural
language. However, most experts recommend a systematic approach by using a
certain template so that useful information about the use case is not
overlooked. The brief descriptions in the use case template are expanded to
include details of the interactions between the actors and the use cases.

Use Case Template

A use case template captures various pieces of information, including the main
path of a successful execution of a use case, as well as all of the alternative
paths contained in it. Table 3.2 shows an example of a use case template.
The natural language description of the behaviors and diagrammatic notations,
such as flow charts or activity diagrams, can be used to complement or
supplement the information contained in the template.

A use case is often described in a standard form, using a template similar
to the following:

Table 3.2. Components of a use case template

Use case name Name of the use case

Use case ID ID of the use case

Super use case The name of the generalized use case to which this use case
belongs

Actor(s) The name of the actor(s) who participate in the use case

Brief description A description showing how this use case adds value to the
organization; that is, what is the purpose or role of this use
case in enabling the actors to do their job

Preconditions The conditions that must be satisfied before this use case
can be invoked

Post-conditions The conditions that will be established as a result of
invoking this use case

Priority The development priority of this use case

Flow of events A step-by-step description of the interactions between the
actor(s) and the system, and the functions that must be
performed in the specified sequence to achieve a user goal

Chapter 3: Use Case Modeling and Analysis 91

Table 3.2. (Cont’d)

Alternative flows Major alternatives or exceptions that may occur in the flow
and exceptions of events

Non-behavioral The non-functional requirements of the system such as
requirements hardware and software platform requirements, performance,

security, etc.

Assumptions All the assumptions made about the use case

Issues All outstanding issues regarding the use case

Source Reference materials relevant to the use case

The components of a use case template written as high-level descriptions in
natural language have to be agreed by both the client and the development
team. Bear in mind that a use case is a high-level communication tool for both
stakeholders. The following provides an explanation of each item in the
template shown in Table 3.2.

• Use case name describes the goal of the actor. Typically, it is in a verb �
noun phrase or verb � noun format, e.g. Withdraw Money.

• Use case ID is a unique identifier of the use case. It usually has a format
like UC � number, e.g. UC100. The prefix generally represents the type of
UML element and the number should be allocated systematically for easy
reference.

• Super use case. This field can be blank. If the use case inherits a parent use
case, this entry is the name of the parent use case.

• Actor(s). All the actor(s) participating in the execution of the use case are
listed, such as people, systems, etc.

• Brief description. A concise description is used to define the scope of the use
case and the observable value to the actor.

• Preconditions and post-conditions. Preconditions specify some constraints
that must be satisfied before the use case can be invoked, while post-
conditions serve to ensure that the use case has performed the task
properly after invocation. Both pre- and post-conditions provide important
hints for system test (at the use case level) in the subsequent software
development stage. Let us consider the ATM example again. The Withdraw
Money use case is a normal scenario and its preconditions may be the
following: a valid ATM account, a positive balance, the maximum daily

92 Object-oriented Technology

accumulative withdrawal amount is $2,000. The post-condition may be that
after processing the withdrawal transaction, the account balance must
remain positive and the daily accumulative withdrawal amount must not
exceed $2,000.

Well-specified pre- and post-condition elements of the use case
description can significantly reduce the complexity of the use case. They can
also be used as black-box test cases. Furthermore, the contents of the
pre- and post-conditions can be used for deriving alternative scenarios for
that use case.

• Priority. The priority in the use case template serves to indicate the priority
ranking in the development schedule from the view of the development
team. We usually assign a high ranking to use cases that are
architecturally significant. Similarly, a high priority ranking should also be
assigned to those use cases which are thought to be more difficult or have
many unknown factors or risks associated with them. All high priority use
cases will be analyzed and developed first in the development schedule.

If a use case covers a wide area of the system in terms of hardware
nodes or software subsystems, this use case will be considered
architecturally significant. For example, the Withdraw Money use case will
cover a wide area of the ATM system: card authentication, account login,
account selection, amount input, etc. In terms of hardware nodes,
its execution involves the collaboration of the ATM machine, the central
bank computer and the individual bank’s computers. On the other hand, the
Check Balance use case will definitely be less significant by comparison
with the Withdraw Money use case.

• Flow of events. The flow of events captures the external observable
behaviors of the use case and focuses on describing the interactions between
the user and the system when the use case is invoked. This component of
the use case template describes the main flow of interactions. Alternative
flows and exception handling are also captured in the Alternative Flows and
Exceptions section of the template. Important system actions that lead to
the post-conditions of the use case are also captured. Other unimportant
internal logic of the system should be ignored since the purpose here is to
define the specifications of the system.

• Alternative flows and exceptions describe the execution of the use case
under exceptions that are not covered in the flow of events.

• Non-behavioral requirements describe the requirements other than
functional or behavioral requirements: performance, user interface, etc.

Chapter 3: Use Case Modeling and Analysis 93

• Assumptions about the use case should be recorded. For example,
the password is numeric only, with not more than ten digits.

• Issues. All outstanding issues related to the use case need to be resolved.
For example, should the user interface be customizable for customers of
different banks?

• Source. This field includes references and materials used in developing the
use case such as memos, minutes of meetings, etc.

Prioritizing Use Cases
The use case model is not only useful for requirements specification but also for
planning the work process in different phases of the system development life
cycle. Since the use case model should be understandable by both the system
developer and the user, it is quite natural to plan the development of the
system by scheduling the completion dates of the use cases in the use case
model. Use cases in the use case model are normally developed at different
times. Depending on the scale of the system, some architecturally significant
use cases should be developed first and optional or less important
functionalities of the system are developed later. In large-scale systems
involving multiple software development teams, the development of several use
cases are carried out in parallel. Optimally scheduling the development of use
cases is a difficult task, and there are a number of factors that we need to
consider.

Factors to Consider for Prioritizing Use Cases

The main philosophy behind prioritizing use cases is to reduce the risks and
uncertainties of the project as early as possible, i.e. use cases are ranked
according to their relative significance for successful completion of the system.
For example, if the system involves some technologies unfamiliar to the
development team, the developer should first go through the analysis of all the
use cases involving these technologies to reduce uncertainty. The following
factors typically increase the priority ranking of a use case:

• Architectural significance of the use case
• Use of new and untested technologies
• Problems that require substantial research effort
• Great improvement in efficiency (or revenue) of the business process
• Use cases that support major business processes

94 Object-oriented Technology

The priority ranking of a use case is determined by taking the above factors
into account. Usually, a fuzzy scheme of high–medium–low would be used to
rank use cases. If a more precise ranking is required, each use case can be
assigned with a score for each factor and the total score will be used for
ranking. For better precision in ranking, it is also possible to apply weightings
to the factors in calculating the total score.

Use Case Modeling and Analysis Process

Overview
Before use case modeling and analysis can be conducted, it is necessary to carry
out some background research such as interviewing users for the system
requirements, and studying the business workflow or existing computer
systems of the organization. Figure 3.14 illustrates the relationships between
use case analysis and the other processes of the software development life cycle.
The input to use case analysis can be a problem statement or business model
prepared after interviewing the system users. We can also study the company’s
business workflows and operations associated with the system. The output is a
use case model that describes the total requirements of the system from the
user’s point of view. The use case model consists of use case diagrams, use case
descriptions and instance scenarios of the use cases. A textual analysis carried
out on the use case descriptions can produce an initial class model (a domain
class model) by identifying candidate classes for the system. In addition, the
instance scenarios tell us how the system interacts with the actors in specific
situations. The instance scenarios can be used to find out what objects will be
involved and how these objects will interact in realizing the use cases.
These instance scenarios can also be used as test cases of the system.

Developing Use Case Models
Before the use case analysis is carried out, it is necessary to interview the users
to get a better understanding of the users’ business activities. The results of the
interviews are then summarized in a problem statement or a business model.
The use case analysis is an iterative and incremental process consisting of the
following steps:

Developing an initial use case model involves the following:

• Developing the problem statement
• Identifying the major actors and use cases

Chapter 3: Use Case Modeling and Analysis 95

Figure 3.14. Relationship between use case analysis process and other processes

Problem statement

Use case
analysis

Customer

Use model

Withdraw
Money

Deposit
Money

Check
Balance

ATM System

Develop use case
description

Use case description

Brief
description

Flow of
events

Instance
scenario

(successfully
withdraws
$250.00)

Domain
class
model

Textual
analysis

Behavioral
modeling
(see next
chapter)

<<extend>>

Process
Excess Limit

<<include>>

Login
Account

Structuring use cases

Withdraw
Money

Domain analysis
Business workflow analysis

System1

Grouping use case
into packages

Package1

Package2

[Record
Found]

[Number
Of

Record] [Continue]

[No Record
Found]

[Number Of Record ??]

Select Member Record

Search
Member

Select
Place
Order

Enter
Order

Submit
Order

[Cancelled]

:Order

Test cases

96 Object-oriented Technology

• Creating an initial use case diagram
• Describing briefly the use cases (with initial descriptions)
• Identifying/Refining candidate business (domain) classes using textual

analysis

Refining the use case model includes the following steps:

• Developing base use case descriptions
• Iteratively elaborating on the base use cases descriptions and determining

the <<extend>>, <<include>> and generalization relationships
• Developing instance scenarios
• Prioritizing use cases

The above steps need not be performed in a sequential order. Some steps
may be performed in parallel, while others may be revisited after another step
has been performed. For example, after identifying the candidate classes,
the brief use case description may require revision. In addition, different use
cases may be developed at a different pace. Some use cases may be fully
developed, while others may just have their title designations which will be
further elaborated at a later stage. Hence, the reader should treat these steps
as a checklist of items to be performed to complete the use case model.

Developing Initial Use Case Model
The initial use case model provides an overview of the functionality of the
system. It can serve as the agreed requirements specification of the system.
The initial use case model is very useful for planning the development priorities
of various use cases.

Identifying Major Actors
When identifying the actors of the system, find the answers to the following
questions:

• Who will use the primary function(s) of the system?
• Who will require support from the system to accomplish their daily work?
• Who will use its results and/or supply the data?
• Who will need to maintain, administer and operate the system?
• With what hardware systems must the system interact?
• With what other computer systems must the system interact?

Chapter 3: Use Case Modeling and Analysis 97

Use Case Modeling: Mail Order Case Study

Step 1: Develop Problem Statement

In order to improve the operational efficiency of a mail order company,
the chief executive officer is interested in computerizing the company’s
business process. The major business activities of the company can be
briefly described as follows:

A customer registers as a member by filling in the membership form
and mailing it to the company. A member who has not been active
(no transactions made) for a period of one year will be removed from the
membership list and he/she needs to re-apply for the reinstatement of
the lapsed membership.

A member should inform the company of any change in personal
details such as home address, telephone numbers, etc.

A member can place an order by filling out a sales order form and
faxing it to the company or by phoning the Customer Service Assistant
with the order details.

The Customer Service Assistant first checks for the validity of
membership and enters the sales order information into the system.

The Order Processing Clerk checks the availability of the ordered
items. If they are available, he/she holds them for the order. When all
the ordered items are available, he/she will schedule their delivery.

The Inventory Control Clerk controls and maintains an appropriate
level of stock and is also responsible for acquiring new items.

If there is a problem with an order, the member will phone the
Customer Service Assistant, who will then take appropriate action to
follow up the particular sales order.

Members may return defective goods within 30 days and get their
money back.

The system will record the name of the staff member who handled
the transaction for future follow up action.

98 Object-oriented Technology

Step 2: Identify Major Actors
If you carefully examine the problem statement, it is not difficult to identify the
Customer Service Assistant, Order Processing Clerk and Inventory Clerk as the
major users of the Mail Order System. The following actors of the system are
identified:

• Customer Service Assistant
• Order Processing Clerk
• Inventory Control Clerk

A short paragraph should then be written to describe each of the actors.
Table 3.3 shows the specification of the Order Processing Clerk.

Table 3.3. Specification of Order Processing Clerk actor

Actor Name Order Processing Clerk

Description The Order Processing Clerk is responsible for processing sales
orders, submitting re-order requests, requesting necessary
deposits from members and scheduling the delivery of the goods
to the member.

Guidelines for Identifying Use Cases

Finding use cases is an iterative process. This process normally starts with
interviewing the users (actors) who directly or indirectly interact with the
system. Typically, it starts from bottom up, involving the customer describing
scenarios from their business activities. Each of these descriptions is a possible
use case. These potential use cases can then be elaborated, modified, broken
into smaller use cases or integrated into larger ones.

An important fact to remember is that people are generally not very
forthcoming, and extracting useful information from the users is a skill that
takes years of experience. The following questions may be useful in collecting
information from users:

• What are the main tasks carried out by each actor?
• What data are manipulated and processed by the system?
• What problems is the system going to solve?
• What goals does an actor want to achieve using the system?
• What are the major problems with the current system and how can the

proposed system simplify the work of the user?

Chapter 3: Use Case Modeling and Analysis 99

Guidelines for Naming Use Cases

The name of a use case consists of a verb and a noun or noun phrase in the
following format:

verb � noun or verb � noun phrase

The use case name describes an operation which achieves an observable
user goal. For example, Place Order is a use case in an Order Process System,
and Withdraw Money is also a use case for an ATM system (see Figure 3.15).
They are in the verb � noun format.

Figure 3.15. Examples of use cases

Place Order Withdraw Money

As use case models serve as a communication tool between end users and
system designers, it is often preferable to use high-level and non-technical
naming terminology understood by the layman. Some designers prefer to use
verb � noun phase for naming their use cases. For example, you may prefer to
name a use case as “select a suitable candidate from the HR database” instead
of “Select Candidate” for a human resources information system.

Step 3: Identify Use Cases

By examining the responsibilities of the actors of the Mail Order
System, the following use cases are identified:

• Check Order Status
• Place Order
• Handle Goods Return
• Update Membership Record
• Archive Membership
• Register New Member
• Process Order
• Schedule Delivery
• Order Goods
• Receive Goods
• Deliver Goods

The complete initial use case model is shown in Figure 3.16.

100 Object-oriented Technology

Figure 3.16. An initial use case model

Order Processing

Customer
Service

Assistant
Inventory
Control
Clerk

Order
Processing

Clerk

Check Order Status

Place Order

Handle Goods Return
Schedule Delivery

Process Order

Membership

Update Membership Record

Archive Membership

Register New Member

Inventory Control

Receive Goods

Order Goods

Deliver Goods

Mail Order System

Step 4: Create Initial Use Case Diagram
In a large software project, the use cases are usually organized into packages,
and sometimes a hierarchical structure of packages may be needed for very
large-scale projects. A package is a place holder which can contain any UML
elements, including packages themselves. By organizing the use cases into
packages, the use case model can be managed more easily. In the case study,
the use cases are divided into three packages. Each package contains a set of
use cases for handling a certain type of business activity.

Step 5: Describe Use Case
Briefly describe each of the use cases with a short paragraph. The brief
description will be further expanded and elaborated when the use case is
analyzed. The following Tables 3.4 and 3.5 give a brief description of the
Schedule Delivery use case and the Check Order Status use case.

Chapter 3: Use Case Modeling and Analysis 101

Table 3.4. Initial use case description of the Schedule Delivery use case

Use Case Schedule Delivery

Use Case ID UC-300

Actor Order Processing Clerk

Description The Order Processing Clerk selects an order from the list of
filled sales orders. The system displays the sales order details,
together with the member’s telephone number and address. The
Order Processing Clerk enters the delivery date and time after
talking with the member over the phone. The system records the
delivery date and time in a dispatch request to the delivery
team.

Table 3.5. Brief description of the Check Order Status use case

Use Case Check Order Status

Use Case ID UC-400

Actor Customer Service Assistant

Description The Customer Service Assistant enters the ID of the member.
The Customer Service Assistant selects a sales order of the
member. The system displays the status of the sales order.

Identify/Refine Candidate Business (Domain) Classes

Having prepared a brief description for each of the use cases, try to identify the
classes of the system. The identified classes will then be used as part of the
vocabulary for writing the expanded use case descriptions.

It is important to note that identification of objects and classes is a
continuous process throughout the whole system development life cycle;
the class model will be iteratively refined in each step of the life cycle.

During the use case analysis process, classes can be identified by
performing a textual analysis on the brief use case descriptions. The nouns and
noun phrases in the use case descriptions are highlighted and evaluated for

102 Object-oriented Technology

possible inclusion as a candidate class. The result of the analysis is a set of
candidate classes with their descriptions. An initial class diagram is drawn to
show the static relationships between the classes. If a domain analysis has been
performed to develop a domain class model, the results of this step will be
combined with the domain class model to produce the initial class model.
This was elaborated on in the previous chapter.

Step 6: Perform Textual Analysis
A textual analysis needs to be performed for each of the use cases based on
their descriptions; this will yield a set of candidate classes in the process.
These classes will then be considered for inclusion in the domain class model
which serves as a preliminary class model for the future development of the
initial class model.

A textual analysis on the Process Order use case is demonstrated in
Table 3.6. All the nouns and noun phrases have been underlined in the brief use
case description.

Table 3.6. Textual analysis on the Schedule Delivery use case

Use Case Schedule Delivery

Use Case ID UC-300

Actor Order Processing Clerk

Description The Order Processing Clerk selects an order from the list of
filled sales orders. The system displays the sales order
details, togehter with the member’s telephone number and
address. The Order Processing Clerk enters the delivery
date and time after talking with the member over the phone.
The system records the delivery date and time in a dispatch
request to the delivery team.

Note: Recall that a use case model often consists of several use cases.
Each of the use cases has its own corresponding use case description, including
its brief description and the flow of events, providing more details. As progress
is made in the development of the project, more and more use cases will be
developed according to the use case schedule. Iteratively and incrementally
refine and enrich the initial class model (Figure 3.17) by performing the textual
analysis for each of the use cases that have been developed.

Chapter 3: Use Case Modeling and Analysis 103

Figure 3.17. Initial class model

submitted by
Purchase OrderMember

handled by

Order Goods

Order Processing
Clerk

Customer Service
Assistant

Inventory Control
Clerk

Purchase Order

Goods Return Order Line Goods Receive

placed by placed by

supplied by

Supplier

Expand Initial Use Case Model

The initial use case model is expanded incrementally in subsequent phases of
the system development life cycle. In each phase, some use cases are selected
and analyzed to produce detailed specifications of the necessary behavioral and
functional requirements. Common behaviors and alternative behaviors of use
cases are identified when the use cases are expanded and analyzed.
These behaviors are extracted to become inclusion, extension and
generalization use cases. These, in turn, help to make the use case model easier
to maintain. The classes identified in the analysis of the use cases are used to
update and refine the class model.

Step 7: Develop Base Use Case Descriptions
Table 3.7 shows a use case description for an order processing system. In this
example, the use case name is Place Order. Along with the name, provide a brief
description of each use case. The precondition can effectively reduce the
complexity of the use case. For example, as a registered member, one must
already have a valid account. Consequently, many alternative situations,
such as invalid account, account on-hold, etc., will not be applicable to valid
members.

104 Object-oriented Technology

Table 3.7. Description for the Place Order use case

Use case name Place Order

Use case ID UC-100

Super Use Case The name of the generalized use case to which this use case
belongs.

Actor(s) Customer Service Assistant

Brief description A Customer Service Assistant places an order and then
submits it for processing.

Preconditions The member must have registered with the system.

Post-conditions The Customer’s order will be directed to the order process
department for processing.

Flow of events 1. The Customer Service Assistant finds the member’s
record by entering the member’s ID or name. The
system displays a list of members that match the
information entered by the Customer Service Assistant.

2. The Customer Service Assistant selects the required
member record. The system displays the details of the
member.

3. The Customer Service Assistant selects “Place Order.”
A new order form and order ID are then generated and
displayed.

4. The Customer Service Assistant selects items from the
catalog and adds them to the order.

5. The Customer Service Assistant submits the order for
processing. The system records the order and forwards
it to the Order Processing Clerk.

Alternative flows At any time the Customer Service Assistant can decide to
and exceptions suspend the ordering process and come back to it later, or

to cancel the order.

Priority High

Non-behavioral The system should be able to handle 20,000 new orders
requirements per day.

Assumptions

Issues Is there any limit on the amount of an order?

Source User Interview Memo 21, 8/9/01

Chapter 3: Use Case Modeling and Analysis 105

Step 8: Structure Use Cases
After elaborating on the use cases, the Place Order, Register New Member and
Archive Membership use cases have a common behavior — they all involve
finding the member record from the system. Hence, the inclusion use case
Find Member Record is created to cover this common behavior. The revised use
case diagram is shown in Figure 3.18.

Figure 3.18. Revised use case model

Inventory
Control
Clerk

Customer
Service

Assistant

Membership

Find Member
Record

Update Membership
Record

Archive
Membership

Register New
Member

Inventory Control

Receive
Goods

Deliver
Goods

Order
Goods

Order Processing

Check Order Status

Place Order

Handle Goods Return

Process Order

Schedule Delivery Order
Processing

Clerk

<<include>>

<<include>>

Mail Order System

The revised descriptions of the Place Order and Find Member Record use
cases are shown in Tables 3.8 and 3.9 respectively.

106 Object-oriented Technology

Table 3.8. Revised description of the Place Order use case

Use case name Place Order

Use case ID UC-100

Super Use Case

Actor(s) Customer Service Assistant

Brief description A Customer Service Assistant places an order and then
submits it for processing.

Preconditions The member must have registered with the system.

Post-conditions The Customer’s order will be directed to the order
processing department for processing.

Flow of events 1. Include (Find Member Record).
2. The Customer Service Assistant selects “Place Order.”

A new order form and order ID are then generated and
displayed.

3. The Customer Service Assistant selects items from the
catalog and adds them to the order.

4. The Customer Service Assistant submits the order for
processing. The system records the order and forwards
it to the Order Processing Clerk.

Alternative flows At any time the Customer Service Assistant can decide to
and exceptions suspend the ordering process and come back to it later, or

decide to cancel the order.

Priority High

Non-behavioral The system should be able to handle 20,000 new orders
requirements per day.

Assumptions

Issues Is there any limit on the amount of an order?

Source User Interview Memo 21, 8/9/01

Chapter 3: Use Case Modeling and Analysis 107

Table 3.9. Description of the Find Member Record use case

Use case name Find Member Record

Use case ID UC-10

Brief description A member record is requested.

Post-conditions A membership record is returned.

Flow of events 1. The Customer Service Assistant finds the member
record by entering the member’s ID or name. The
system displays a list of members that match the
information entered by the Customer Service Assistant.

2. The Customer Service Assistant selects the required
member record. The system then displays the details of
that member.

Alternative flows No member record is found for the customer.
and exceptions

Develop Instance Scenarios

A use case specifies all possible ways of using a system functionality to achieve
a user goal. Sometimes, it is necessary to write some examples (instance
scenarios) to illustrate the execution of a complex use case. Instance scenarios
are easier for the user to understand, and they are very useful for clarifying any
ambiguity in the use case description. The instance scenarios can also serve as
test cases for system testing.

A sample instance scenario of the Place Order use case is shown in
Table 3.10.

Table 3.10. Instance Scenario of Place Order

Parent use case name Place order

Parent use case ID UC-100

Instance name A sales order form is received but the membership
number is missing.

Instance ID UCIS-100-1

108 Object-oriented Technology

Table 3.10. (Cont’d)

Environmental The name (Peter Chan) and signature of the member
conditions and are available in the system.
assumptions

Inputs A sales order form

Instance flow 1. The Customer Service Assistant enters
description “Peter Chan” to find the member record. The

system then displays a list of members that
match the member’s name.

2. The Customer Service Assistant repeatedly selects
a member record. The system displays the
signature of the member when a member record
is selected.

3. The Customer Service Assistant selects “Place
Order.” A new order form and order ID are then
generated and displayed.

4. The Customer Service Assistant selects items from
the catalog and adds them to the order.

5. The Customer Service Assistant submits the order
for processing. The system records the order and
forwards it to the Order Processing Clerk.

Outputs The sales order is placed.

Step 9: Prioritize Use Cases
Table 3.11 shows an informal ranking of some of the use cases of the Mail Order
System.

Table 3.11. Priority ranking of use cases

Priority Rank Use Case Reason

High Process Order Directly improves the efficiency of
the business process and affects the
system architecture.

High Place Order Same as above

Chapter 3: Use Case Modeling and Analysis 109

Table 3.11. (Cont’d)

High Find Member Record Included as part of the Place Order
use case.

Medium Order Goods Ordering goods is less often than
processing orders but still is one of
the major business processes.

Medium Deliver Goods Can improve the control of stock
level of goods.

Low Update membership Small impact on the system
record architecture.

Low Register New Member Same as above.

Tricks and Tips in Using Use Case Analysis

Use Cases as a Communication Tool
It is important to make sure that each use case emphasizes the functions of the
system as seen by the user and that they are understood by both the user and
the system analyst. The use cases can then truly become an effective
communication tool for the domain experts and the system analysts and
designers in the early stage of the development life cycle.

Finding the Right Use Cases
Cockburn (1999) suggests that, in order to find the use cases for a given system,
we must first examine the goals of the system. Use cases provide an observable
value to an actor, and by focusing on how an actor can achieve the goals of a
system, we can identify the correct use cases quicker. The goal of an ATM
system might include Withdraw Money, Deposit Money, Check Balance and
Transfer Money as shown in Figure 3.19.

Correct Focus of Base Use Case
In identifying use cases, it is easy to focus on the process, rather than the
system goal. In the previous ATM example, one might have mistakenly chosen
Login Account and Select Transaction as use cases. Certainly these are all

110 Object-oriented Technology

Figure 3.19. Use cases of an ATM system

Customer

ATM System

Withdraw Money

Deposit Money

Check Balance

Transfer Money

externally observable behaviors of an ATM system, but no customer would ever
set his/her goal as inputting the password, selecting a transaction and then
leaving the ATM. Furthermore, both Input Password and Select Transaction use
cases do not yield an observable value to the user and, therefore, cannot achieve
a user goal.

Good Use Cases Should be Observable
In Figure 3.20, the Verify Password use case is even more erroneous in that the
customers cannot Verify Password themselves! This use case describes an
internal task that the system needs to perform (hence externally unobservable)
and definitely should not be included in the use case model.

Use Cases versus Process Charts
It is very easy to fall into the trap of thinking that use cases are processes and
that data flows in and out along the association lines. Similarly,
the <<include>> and <<extend>> arrows between use cases are often misread
as directions of either data flows or control flows. Actually, nothing flows
between the actors and the use cases. It should be remembered that use case
diagrams are fundamentally different from flow charts, control flows or
structure charts because they do not represent the order or the number of times
that the system actions will be executed.

Chapter 3: Use Case Modeling and Analysis 111

Figure 3.20. Incorrect use cases

Customer

ATM System

Input Password

Verify Password

Select Transaction

Apply Textual Analysis in Different Contexts
When defining use cases in the use case descriptions, use nouns and verbs
consistently in order to identify objects using textual analysis and their
interactions at a later stage. Textual analysis can also be applied to identify
actors and use cases from the problem statement. To identify system actors,
focus on questions such as “Who are the system users?” “What are the external
entities which interact with the system?”. To identify use cases ask, “What
task(s) the system needs to perform to fulfill the user goals?”

When elaborating on a use case by creating the use case description,
focus on what the system needs to perform in a more detailed interactive mode
of description between the user and the system. This includes a brief
description of the use case and the flow of events in the use case description
template. The brief description clarifies what the system aims to do with the
help of the use case concerned. The flow of events helps to identify the external
system behaviors at this stage (use case modeling and analysis) and the
internal behaviors at a later stage (behavioral modeling and analysis). See
Figure 3.21.

Use Bi-directional Communication Associations
The communication association connects the actor(s) and the use case
indicating the bi-directional interactions between the system and the actor(s).
Even though it has been suggested that unidirectional associations can be used
to represent the communications from the initiator to a use case (and most case

112 Object-oriented Technology

Figure 3.22. Bi-directional communication association

UseCaseName
✗

ActorName

UseCaseName
✓

ActorName

tools do not prohibit this), use cases are still considered as a sequence of
transactions (interactions), and as such, it is not necessary to show the
association with an arrow (see Figure 3.22).

Figure 3.21. Application of textual analysis in different contexts

Problem
statement Use case description

Brief
description

Flow of
events

Customer

ATM System

Domain
class
model

Use case
analysis

Deposit Money

Check Balance

Withdraw Money

Textual
analysis

Textual analysis in use
case level yields domain

classes

Textual analysis
in system level

yields use cases
and actors

Structure Use Case Models
As the use cases are elaborated in detail, common behaviors or optional
behaviors can be identified. In order to make the use case model easier to
maintain, it is necessary to extract the common behaviors and the optional
behaviors into inclusion use cases and extension use cases.

Chapter 3: Use Case Modeling and Analysis 113

The use case model can be simplified by factoring out common behaviors
that are required by multiple use cases and thereafter introducing the
<<include>> stereotype. If the base use case is complete and the behavior is
optional, consider using the <<extend>> stereotype. The use case structuring
process also helps to save time and effort in analyzing the use cases. Therefore,
use case structuring should be done in an iterative and incremental manner.
However, remember not to put too much effort into identifying the common
behaviors and optional behaviors since this may defeat the purpose of saving
time and effort. The use case structuring should be carried out when it is
convenient to do so.

Specify Use Cases in Detail ... but Not Too Much
When designing a use case model, it is very easy to get bogged down in
excessive details. Remember that even the flow of events inside the use case
description only serves to show the interaction between the actor(s) and the use
case. In other words, only describe what the system is supposed to do and not
how the system does it. Start with the most observable and general
requirements first. When the users are happy that these are represented
correctly, add details to the use case, where necessary. For example, you may
first consider only the use case name that is the verb � noun or verb � noun
phase pattern. Later, elaborate on the use case further by creating the use case
description. When the contents are first filled in the use case template, do not
try to enter everything at the same time. Instead, only fill in the information
with which you feel comfortable. It is perfectly acceptable to leave some
elements blank at the initial stage. As the system progresses up the
development process, it will be possible to identify what the contents of these
blank elements should be.

Fit Use Cases into System Architecture
Packages should be used where appropriate to make the use case diagram more
easily understood. Use cases that form a natural grouping should be organized
into packages. Figure 3.23 shows an example of how packages are used for a
loan processing system.

Use Case Modeling and Analysis with VP-UML
The previous sections in this chapter covered the theories associated with use
case analysis and modeling. Here, the practical aspects of the analysis and

114 Object-oriented Technology

Figure 3.23. Use cases grouped into packages

Apply Loan Approve Loan

Check Loan
Status

Loan processing

Add Customer Bill Customer

Suspend
Customer

Customer information

modeling process will be illustrated with the example Mail Oder System
discussed earlier using the VP-UML case tool. By walking through the process
step by step, you will appreciate how easy it is to perform use case analysis and
modeling.

The Mail Order System example will be used to illustrate the steps in the
use case analysis and modeling process. Before you begin, start the VP-UML
case tool.

Step 1: Prepare the Problem Statement
The problem statement is prepared through interviews with the stakeholders of
the system. Details of the problem statement for the Mail Order System have
been presented earlier. The problem statement can now be entered into the
VP-UML case tool for further work. Simply follow the steps below.

1.1. Enter Textual Analysis working area by clicking on the application
toolbar (see Figure 3.24).

1.2. Type in the problem statement in the text pane. If the problem statement
is already saved as a text file, open it from a file by clicking at the top
left-hand corner of the text pane.

1.3. Edit the following problem statement in the text pane (see Figure 3.25).

Chapter 3: Use Case Modeling and Analysis 115

Figure 3.24. Textual Analysis working area

Figure 3.25. Entering problem statement for Textual Analysis

116 Object-oriented Technology

In order to improve the operational efficiency of a mail order
company, the chief executive officer is interested in computerizing
the company’s business process. The major business activities of
the company can be briefly described as follows:

A customer registers as a member by filling in the membership
form and mailing it to the company. A member who has not been
active (no transactions made) for a period of one year will be
removed from the membership list and he/she needs to re-apply for
the reinstatement of the lapsed membership.

A member should inform the company of any changes of
personal details such as home address, telephone numbers, etc.

A member can place an order by filling out a sales order form
and faxing it to the company or by phoning the Customer Service
Assistant with the order details.

The Customer Service Assistant first checks for the validity of
membership and enters the sales order information into the
system.

The Order Processing Clerk checks the availability of the
ordered items and holds them for the order. When all the ordered
items are available, he/she will schedule their delivery.

The Inventory Control Clerk controls and maintains an
appropriate level of stock and is also responsible for acquiring new
items.

If there is a problem with an order, members will phone the
Customer Service Assistant. The Customer Service Assistant will
take appropriate action to follow up the sales order.

Members may return defective goods within 30 days and get
their money back.

The system will record the name of the staff member who has
initialized an updated transaction to the system.

Note: When preparing the problem statement having interviewed the key users
of the system being developed, only focus on their high-level roles and goals
rather than the detail workflow of the business operations associated with the
system. These workflow will later be identified when you document the
individual use case as flows of events in the detailed use case descriptions.

Chapter 3: Use Case Modeling and Analysis 117

Step 2: Identify Major Actor(s)
Once the problem statement is in the case tool, the next step is to identify
actors in the Textual Analysis working area.

2.1. Highlight the phrase Customer Service Assistant in the problem statement
as a candidate actor and drag it to the Candidate Class Container at
the top right-hand corner. Note that all occurrences of the same actor in
the problem statement are automatically highlighted (see Figure 3.26).

Figure 3.26. Identifying major actors

2.2. Now right click on the newly created candidate class in the Candidate
Class Container. A pop-up menu will appear. Select the Actor option
in the pop-up menu to declare the candidate class as an actor (see
Figure 3.27).

2.3. Note that the icon of the candidate class in the Candidate Class

Container has changed from class to actor and the type of the
candidate class has also changed to Actor in the table below it
(see Figure 3.28).

118 Object-oriented Technology

2.4. To enter the description of an actor, select the Class Description cell next
to the actor Customer Service Assistant in the table in the bottom right
corner. Type in a brief description such as the task(s) performed by the
actor. Where necessary, adjust the size of the cell by dragging its boundary
at the bottom of the cell edge to view the whole description (see
Figure 3.29).

Figure 3.27. Defining actor type

Figure 3.28. Candidate Actor in Candidate Class Container

Chapter 3: Use Case Modeling and Analysis 119

2.5. The candidate actors can be added into the model repository. Elements in
the model repository can be retrieved for later use, e.g. to draw a use case
diagram. To add Customer Service Assistant (candidate actor) into the
model repository, right click on the Customer Service Assistant. A pop-up
menu will appear. Select Create Actor Model in the pop-up menu (see
Figure 3.30).

Figure 3.29. Entering actor description in Class Description

Figure 3.30. Creating an Actor in model repository

120 Object-oriented Technology

2.6. The Customer Service Assistant is now added to the Model Repository
Tree. To see the newly created actor model, click on the Model tab in the
Project Explorer Pane (see Figure 3.31).

2.7. Repeat the above steps to identify and create actor models for the actors:

• Order Processing Clerk
• Inventory Control Clerk

(See Figure 3.32.)

Figure 3.32. Actor models in Model Repository Tree

Figure 3.31. Customer Service Assistant actor in Model Repository Tree

Chapter 3: Use Case Modeling and Analysis 121

Note: When creating a candidate actor in the Candidate Class Container, it
is not a model element until it appears in the Model Repository Tree. Only
then can the actor be shared among various models or diagrams. To place an
actor, which has been defined in the model repository, in the diagram, simply
drag it from the Model Repository Tree to the desired location in the
diagram area and release the mouse button. The actor will be created in the
diagram and automatically inherit the name and the documentation that was
previously defined. This operation can also be applied to create use cases and
classes.

Step 3: Identify Use Cases
Let us identify a candidate use case from the problem statement. Very often we
are not able to find a verb � noun pattern that directly matches the candidate
use case in the problem statement. In fact, it is necessary to read through the
text carefully to identify a use case. Follow the steps below to create a use case
directly from the Candidate Class Container.

3.1. To hide the actors in the Candidate Class Container, click on the Show
Candidate Actors toggle button in the Textual Analysis toolbar.
However, note that the actor models still exist in the Model Repository
Tree (see Figure 3.33).

Figure 3.33. Hiding Actors in Candidate Class Container

122 Object-oriented Technology

3.2. Right click on the Candidate Class Container. A pop-up menu will
appear. Then select Add Candidate in the pop-up menu; a cascading
menu will appear. Select Use Case in the cascading menu. An input dialog
will appear (see Figure 3.34).

3.3. An input dialog will appear. Enter Place Order in the input dialog (see
Figure 3.35).

Figure 3.34. Creating a candidate use case in Candidate Class Container

Figure 3.35. Naming a new candidate use case

Chapter 3: Use Case Modeling and Analysis 123

3.4. Click OK in the input dialog. A new candidate use case is then created in
the Candidate Class Container (see Figure 3.36).

3.5. Now edit the use case brief description for the candidate use case the same
way as you would edit the actor description (see Figure 3.37).

Figure 3.37. Creating a brief use case description

Figure 3.36. A new candidate use case in Candidate Class Container

124 Object-oriented Technology

3.6. To add a candidate use case into the model repository, right click on the
desired candidate use case in the Candidate Class Container. A pop-up
menu will appear. Select Create Use Case Model (see Figure 3.38).

3.7. A new use case is added to the Model Repository Tree (see Figure 3.39).

Figure 3.39. A new use case in Model Repository Tree

Figure 3.38. Adding a candidate use case to Model Repository

Chapter 3: Use Case Modeling and Analysis 125

3.8. Repeat the above steps to identify all other candidate use cases below (see
Figure 3.40):

• Check Order Status
• Place Order
• Handle Goods Return
• Update Membership Record
• Archive Membership
• Register New Member
• Process Order
• Schedule Delivery
• Order Goods
• Receive Goods

Figure 3.40. Use cases in Model Repository Tree

126 Object-oriented Technology

Step 4: Create Initial Use Case Diagram
Having identified all the use cases, create the use case diagrams with the case
tool following the steps below:

4.1. Click on the Create New Use Case Diagram icon in the toolbar to
create a new use case diagram (see Figure 3.41).

4.2. Click on the Model tab in the Project Explorer. A list of model elements
will be presented (see Figure 3.42).

4.3. Select the Place Order model from the Model Repository Tree and drag
it to the desired location in the diagram pane. A use case is automatically
placed in the diagram with the name Place Order (see Figure 3.43).

Figure 3.41. Creating a new use case diagram

Chapter 3: Use Case Modeling and Analysis 127

Figure 3.43. Creating a use case with Model Repository Tree

Figure 3.42. Models in Model Repository Tree

128 Object-oriented Technology

4.4. Select Customer Service Assistant from the Model Repository Tree
and drag it to the desired location in the diagram pane. An actor is then
placed in the diagram with the name Customer Service Assistant (see
Figure 3.44).

4.5. Drag on the Association -> Use Case resource-centric icon above the
Customer Service Assistant actor to the Place Order use case and then
release the mouse button. A communication link associated between the
actor and use case is created (see Figure 3.45).

Figure 3.44. Creating an Actor with Model Repository Tree

Figure 3.45. Creating an association relationship using resource-centric icon

Chapter 3: Use Case Modeling and Analysis 129

Note: The resource-centric interface saves unnecessary steps to develop the

same diagram. If you do not want to use this powerful feature, click once on
the Use Case Diagram palette, place the mouse pointer in the desired location
in the diagram pane and then click the mouse button again.
An actor symbol is then created in the diagram pane.

Similarly, an alternative way to connect the communication link between

the use case and the actor will be to click the icon once on the Use Case
Diagram palette, and then place the mouse pointer inside the actor icon.
Then drag the communication link from the actor icon into the Place Order use
case icon.

4.6. Repeat the above steps to create the following use cases and their
association relationships with the Customer Service Assistant actor (see
Figure 3.46):

• Check Order Status
• Handle Goods Return

Step 5: Describe Use Cases
The use cases created require further elaboration so that the next phase of the
analysis can be performed. This is carried out by providing a more detailed
description for each of the use cases.

Figure 3.46. Creating more use cases with Model Repository Tree

130 Object-oriented Technology

5.1. Place the mouse pointer within the Place Order use case, right click the
use case Place Order and select Open Specification from the pop-up
menu (see Figure 3.47).

5.2. Select the Description tab (see Figure 3.48). A Specification Dialog
about the files associated to the element will be displayed.

Figure 3.48. Use case specification setup

Figure 3.47. Use case right click pop-up menu

Chapter 3: Use Case Modeling and Analysis 131

5.3. Enter the contents for each of the elements in the use case template (see
Figure 3.49) and click on the OK button to confirm the use case
description.

Step 6: Perform Textual Analysis
Textual analysis is a simple traditional technique for performing domain
analysis (for more on domain analysis, see Chapter 2: Structural Modeling and
Analysis). It is a technique to identify domain knowledge from the text
description and is typically applied to requirements analysis based on the
textual form of information. Many methodologists apply this technique to
identify domain classes and objects as well as operations for the domain classes.
However, textual analysis itself does not prevent us from applying it to identify
other knowledge and concepts such as business workflow analysis or use case
analysis. The only difference in applying this technique to different domains or
levels in our software development process is the need to focus on the right level
and analyze the right concepts that are being identified. For example, textual
analysis can be applied at the beginning of the use case analysis to identify
actors and use cases. In this case, focus on the set of questions that were
suggested earlier: “Who will use the system?” “What is the role of the user?”
Then identify the system’s end users and the tasks expected to be performed by
the system. Before elaborating a use case from the use case description, focus
on the nouns and noun phrases or verbs and verb phrases from the use case
description.

Figure 3.49. Use case specification and template

132 Object-oriented Technology

Now, let us perform a textual analysis on the Schedule Delivery use case.

6.1. Right click the use case Schedule Delivery and then select Create Textual
Analysis from the pop-up menu (see Figure 3.50).

6.2. The Textual Analysis window will appear. Enter the following text in the
text pane (see Figure 3.51).

The Order Processing Clerk selects an order from the list of filled
sales orders. The system displays the sales order details, together
with the member telephone number and address. The Order
Processing Clerk enters the delivery date and time after talking
with the member over the phone. The system records the delivery
date and time of the sales order. The system records the name of
the Order Processing Clerk who has handled the sales order.

Figure 3.50. Launching textual analysis function with a use case

Chapter 3: Use Case Modeling and Analysis 133

6.3. Now highlight the word order as a candidate class, right click on the word
order, select Add Text as Class in the pop-up menu (see Figure 3.52).
Note all occurrences of the same actor in the problem statement are now
automatically highlighted (see Figure 3.52).

Figure 3.51. Identifying domain classes using textual analysis

Figure 3.52. Identifying candidate classes

134 Object-oriented Technology

6.4. A new candidate class is automatically created in the Candidate Class
Container on the right-hand side and all occurrences of the same class in
the problem statement are automatically highlighted (see Figure 3.53).

6.5. Select the Class Description cell next to the class Order. Enter a brief
description about the Order class. Where necessary, adjust the size of the
cell to view the whole description (see Figure 3.54).

Figure 3.54. Inputting class description for Order class

Figure 3.53. All occurrences of candidate class are highlighted

Chapter 3: Use Case Modeling and Analysis 135

6.6. Repeat the above steps to create the following classes (see Figure 3.55):

• Sales Order
• Member
• Delivery

Step 7: Develop Base Use Case Descriptions
You may at times want to customize the use case template to fit the needs for
use case documentations. The use case template can be modified by adding or
deleting the items in the use case description template.

Follow the steps below to add or delete an item in the use case description.

7.1. Right click on the dialog box to reveal the pop-up menu, and then choose
Insert Item or Add Item (see Figure 3.56).

Figure 3.55. Candidate classes in Candidate Class Container

136 Object-oriented Technology

Note: The Add Item option appends an item at the end of the Use Case
Template, while the Insert Item option creates an element after the current
highlighted position of the Use Case Description.

7.2. Rename the new item as Use Case ID (see Figure 3.57).

Figure 3.57. Renaming items in Use Case Template

Figure 3.56. Adding new items to Use Case Template

Chapter 3: Use Case Modeling and Analysis 137

7.3. Create more items in the use case description template and fill the
contents of the Place Order use case description template as shown in
Figure 3.58.

Figure 3.58. The completed use case description

138 Object-oriented Technology

7.4. Repeat the above steps to complete the use case descriptions for the
following use cases:

• Check Order Status
• Handle Goods Return
• Update Membership Record
• Archive Membership
• Register New Member
• Process Order
• Schedule Delivery
• Order Goods
• Receive Goods
• Deliver Goods

Step 8: Structure Use Cases
In this step, use cases shall be grouped into packages. First, create a set of
packages based on the system’s logical structure; additional packages may be
considered later in terms of the physical structure of the system. Consider the
role of the users to structure the use cases into different packages. In the Mail
Order System example, we can identify three packages, namely inventory,
membership, order processing, which are associated with the major roles of the
actors. The ultimate goal is to organize the use cases into packages to maximize
cohesion within the individual packages and minimize coupling among these
packages. The physical structure should not be considered until the system
design stage. At that point, software deployment issues need to be considered
as well. For example, an ATM system would have more issues to be considered
in software deployment, thus the system architecture will play a much more
important role to implement such a system.

8.1. Create a package by first clicking on the Use Case Diagram palette.

8.2. Place the mouse pointer in the design area and click once. A package
symbol will then appear in the design area. Rename the new package as
Inventory Control. Press Ctrl � Enter to finish the operation (see
Figure 3.59).

8.3. Resize the package symbol so that it can accommodate the use cases (see
Figure 3.60).

8.4. Move each of the use cases by dragging them into the package region
where it belongs or where it is a member (see Figure 3.61).

Chapter 3: Use Case Modeling and Analysis 139

Figure 3.59. Creating a new package

Figure 3.60. Resizing and moving the newly created package

140 Object-oriented Technology

Note: A package can contain other packages, and packages can be nested
within a package at multiple levels. When a package is moved around the
design area, all the UML elements contained inside that package are moved
accordingly, while maintaining their relative positions within the package.

8.5. Repeat the above steps to create packages for the entire use case model.

8.6. Move the elements of the use case diagram by structuring the positions of
the packages, the use case within the package and communication links
between use cases and actors to make the diagram tidy and easier to read
(see Figure 3.62).

8.7. Add the system boundary to the use case model by clicking on the
Use Case Diagram palette and move the mouse pointer to the desired
location on the diagram pane. Move the use cases inside the system
boundary in the same way as you would manipulate a package in the use
case diagram (see Figure 3.63).

Figure 3.61. Structuring use cases into a package

Chapter 3: Use Case Modeling and Analysis 141

Figure 3.62. Structuring the use cases into packages

Figure 3.63. Structuring packages into system boundary

142 Object-oriented Technology

Tip: If a system boundary will eventually be placed in the use case model,
it is better to create the boundary at the beginning before the first use
case is created. This way, use cases are created inside the boundary
without having to move the use cases and actors around to place them
in the right position (see Figure 3.64).

Figure 3.64. Complete use case model structured into packages

Having grouped the use cases into packages according to the actors’
roles and responsibilities, further structure the use cases according to
their common pattern as well as their interactive flow pattern. If some
common behaviors are found in two or more use cases, we can factor them
out by creating an <<include>> use case. On the other hand, if some
alternative scenarios arise due to some special condition(s), we can handle
these by introducing the <<extend>> use case(s). Now, let us structure the
use case model for the Find Member Record <<include>> use case.

8.8. Click on the <<include>> icon at the top of the Handle Goods Return
use case and drag it to a location in the diagram pane where the
<<include>> use case is to be created. When releasing the mouse button,
an <<include>> use case and a communication link between the base use
case and the <<include>> use case will then be created (see Figure 3.65).

Chapter 3: Use Case Modeling and Analysis 143

8.9. Rename the <<include>> use case by typing Find Member Record in the
editable text field of the untitled <<include>> use case (see Figure 3.66).

8.10. Click on the <<include>> resource icon at the top of the Register New
Member use case and drag it out to where the <<include>> use case is to
be created. To create an <<include>> relationship between the Register
New Member use case and Find Member Record use case, drag the
<<include>> resource icon to the Find Member Record <<include>>
use case (see Figure 3.67).

Note: If the <<include>> use case has already been created and you simply
want to connect the base use case with the existing <<include>> use case, then
drop the <<include>> use case into the existing Find Member Record
<<include>> use case. A dependency link between the base use case Register
New Member and the <<include>> Find Member Record use case will then be
created.

Figure 3.65. Creating a new <<include>> use case

144 Object-oriented Technology

Figure 3.66. Naming the new <<include>> use case

Figure 3.67. Structuring use cases with relationships

Chapter 3: Use Case Modeling and Analysis 145

8.11. We can also add a use case description to the Find Member Record
<<include>> use case by:

• customizing the use case description for the Find Member Record
<<include>> use case where necessary

• filling the contents of the <<include>> use case(s) in the same way as
you would edit the base use cases previously (see Figure 3.68).

Step 9: Prioritize Use Cases
We shall prioritize the use cases using the use case schedule.

9.1. Right click on any empty space in the Use Case diagram and select the
open specification item.

9.2. Select the Schedule tab from the pop-up menu (see Figure 3.69).

Figure 3.68. Use case description for the Find Member Record use case

146 Object-oriented Technology

9.3. All the use cases in the Use Case Model are then automatically displayed
in the table. Rank the use cases by choosing the appropriate option in the
Combo Box.

9.4. Provide some justification for each use case in the table for future
reference (see Figure 3.70).

Figure 3.70. Use Case Schedule for the Mail Order System

Figure 3.69. Launching the use case schedule

Chapter 3: Use Case Modeling and Analysis 147

Summary
Use case modeling is the process of describing the behavior of the target system
from an external point of view. Hence, use case analysis emphasizes on
modeling the externally visible behavior and not the internal behavior of the
system. Use case diagrams, which are artifacts of the analysis and modeling
process, are used in the early stages of the system development to capture and
document system requirements.

In performing use case modeling and analysis, a two-stage process is
followed. We first commence with the problem statement to identify the major
actors and use cases of the system so as to create an initial use case diagram.
The description of the behavior of each use case can then be produced, and from
which candidate business classes are identified and refined using textual
analysis.

In the second stage, the use case model is further refined by developing the
base use case descriptions, which are then iteratively elaborated to determine
the <<extend>>, <<include>> and generalization relationships. The instance
scenarios are then developed and use cases prioritized.

To illustrate the concepts described in this chapter, the modeling and
analysis of an online mail order system has been described, detailing the steps
involved by using the powerful features of the VP-UML CASE tool.

Exercise
Consider the problem statement of an online book store in the Exercise of
Chapter 2.

Follow the steps below to develop the use case model of the system:

• Identify the major actors
• Write a description to define the roles of each actor
• Examine the roles of each actor and identify the use cases
• Draw initial use case diagrams
• Write initial descriptions for the use cases
• Perform a textual analysis to identify candidate business (domain) objects
• Develop the base use case descriptions
• Iteratively elaborate the base use case descriptions and determine the

<<extend>>, <<include>> and generalization relationships. Refine the use
case diagram and the use case descriptions to reflect the use case
relationships.

Develop the instance scenarios. For each use case, develop the instance
scenarios to cover all possible paths of execution.

