
Proceedings of the International Multiconference on
Computer Science and Information Technology pp. 189–194

ISBN 978-83-60810-14-9
ISSN 1896-7094

Using UML State Diagrams for Visual Modeling of
Business Rules

Konrad Kułakowski
Institute of Automatics,

AGH – University of Science and Technology,
Al. Mickiewicza 30, 30-059 Kraków, Poland

Email: kkulak@agh.edu.pl

Grzegorz J. Nalepa
Institute of Automatics,

AGH – University of Science and Technology,
Al. Mickiewicza 30, 30-059 Kraków, Poland

Institute of Physics, Jan Kochanowski University
ul. Żeromskiego 5, 25-369, Kielce, Poland

Email: gjn@agh.edu.pl

Abstract—Recently, in response to growing market demand,
several different techniques of business rules representation have
been created. Some of them try to present business rules in a
visual manner. However, due to the complexity of the problem,
the graphic representations that are proposed seem to be farfrom
perfection. In this paper we would like to describe how UML
state diagrams might be used for business rules formulationand
visual modeling. The strength of this approach relies on reusing
classical notions provided by UML 2.0, e.g. an action, guard, etc.,
in a way which is close to theirs original meaning.

I. I NTRODUCTION

RULES constitute a commonly recognized mechanism for
representing knowledge about the world. In particular

they are suitable for specifying the behavior and properties of
different complex artifacts like information systems [1].The
rule-based approach is a foundation of various engineering
and business systems. It is helpful for formulating business
knowledge about the problem domain, defining the way in
which systems interact with the changing environment and
performing inference upon the knowledge. With time, rules
applied to business problems have gained the namebusiness
rules and have become a separate notion. From the very
beginning, business rules have aimed to be precise enough
for professional software engineers and easy to use and to
understand for all parties involved in the modeling of business
domain concepts [2]. This is especially important since domain
experts usually do not have mathematical knowledge indis-
pensable for using formalisms like Prolog, Datalog or Process
Algebras, for example.

The simplicity and expressiveness have also been very
important for UML’s authors. Since UML is perceived as
a universal modeling language, in a natural way there is
a tendency to use it for rule modeling [3], [4]. Growing
popularity of languages like URML [5] proves that UML has
been recognized as a very useful platform for business rules
modeling. UML, thanks to being popular with the software and
business community, has an emerging opportunity to became
an everyday language for wide audience of people involved in
various kinds of business activities.

The paper is organized as follows: In Sect. II related
research in the area of business rules is discussed. Next, in

Sect. III, selected rule modeling aspects are summarized. Then,
in Sect. IV a new approach to rule representation with UML
is proposed. Finally, in Sect. V, concluding remarks, as well
as directions for future work are given.

II. RELATED WORKS

The first known usage of the term “Business Rules” comes
from 1984 [6]. In fact, applying rules to business logic started
in the late 1980s and the early 1990s[7], [8] and focused
mainly on using business rules for data base modeling and
programming. A serious attempt to make business rules better
defined is “The Business Rules Book” written by Ronald G.
Ross [9] and the report of the IBM GUIDE “Business Rules”
Project [2]. In these works the authors define the scope of the
problem domain, and identify core categories and patterns of
business rules.

There is no uniform business rule format [10], [11];
however, there are some standardization efforts in this area
[12]. Also the idea of using UML together with business
rules is not completely new. Usually, UML is treated as
a language for expressing facts about terms in a model
[13], whilst the rules themselves are not written in UML.
In this context, the applying of UML/MOF to modeling
rules, not only to the terms or facts, seems to be a very
interesting perspective. There are several projects that try to
propose UML/MOF representation for rules. One of them is
Production Rules Representation(PRR) proposed by OMG
[10]. PRR has been developed to address the need for a
representation of production rules in UML models (business
rules modeling as part of a modeling process). It proposes a
meta-model for production rules and defines several notions
like condition, action, binding and rulesets. The relationship
between PRR and OMG model driven architecture is also
discussed.

Another interesting initiative developed in order to exchange
rules between communities is a general markup framework for
integrity and derivation rules (R2ML) [14], [15]. The authors
of R2ML define the rule concepts on the basis of RuleML[11]
and Semantic Web Rule Language (SWRL) in terms of MOF
and UML[15]. On the top of the list of concepts provided
by RuleML [16], a UML-Based Rule Modeling Language

978-83-60810-14-9/08/$25.00c© 2008 IEEE 189

190 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

(URML) has been developed. It extends UML meta-model
with the notion of a rule and defines new diagram elements
supporting visual notations for rules [3], [5]. In this approach,
modeling rules is done with the help of a class diagram
enriched by one new diagram element called aconclusion
arrow. A created model must conform to theURML meta-
model, defining the semantics for all indispensable notions,
i.e. rules, conditions, conclusions, etc.

Besides the indisputable benefits like providing visual rule
notation in accordance withUML/MOF, the relatively high
number of classes required for defining a single rule might
be a little onerous for people not accustomed to work with
large UML models. A new diagram elements such as rule’s
circle requires use of specialUML tools supportingURML
syntax.

Business rules express the statements upon the model
elements called business vocabulary. Thus it is important
to have well formulated business vocabulary with precisely
defined semantics. As an example of a standard facilitating
business vocabulary formulation may serve SBVR (Semantics
of Business Vocabulary and Business Rules) [17]. SBVR
defines the vocabulary and rules, which allow to express
business vocabulary, business facts and business rules. This
standard also provides XMI scheme for the interchange of
created artifacts among different software tools. However,
SBVR is not an UML based language, since its general-
ity, it might be successfully used in the context of UML
model. In such approach detailed semantics of business vo-
cabulary is defined with the help of SBVR in Structured
English, whilst some aspects of business vocabulary are also
expressed in form of UML class diagram (e.g. EU-Rent
Example [17]).

III. MODELING BUSINESS RULES

Let us take a closer look at the modeling concept first.
The situation is as follows: by having a natural language
description of a certain problem area, we aim at providing
a declarative rule-based description of this area. The rule-
based description is then formalized (or at least disciplined)
compared to the original one. Rules are a knowledge rep-
resentation method that captures regularities, constraints and
relations. While formalized, this description is a high-level
one, close to the original natural language-based one. So the
basic sense of rule modeling is to build a rule-based knowledge
representation of the problem. It is a classic case of knowledge
engineering, where a designer, knowledge engineer has to
identify, extract, describe and represent knowledge possessed
by domain experts, or possibly embedded in an information
system, such as an enterprise.

The rule representation should meet certain requirements.It
should:

• be easy to grasp by non-technical individuals,
• be possible to process automatically and to integrate with

a certain runtime (rule engine),
• formalized to some degree,

• meet certain quality standards (e.g. completeness, lack of
redundancy),

• be suitable for interchanging and integration with other
systems,

• be manageable.

The emphasis on these aspects can differ, depending on
the goal of providing the rule-based description. This could
be describing system requirements, including constraints, or
building a complete system from scratch. Rules can also be
thought of as a certain means of formalized communication.

Rule modeling methods and approaches should be consid-
ered with respect to other modeling methods such as software
engineering methods and methodologies (e.g. UML, MDA).
Since rules are often an essential part of business systems,
business process modeling methods, such as workflows or
BPMN, have to be taken into consideration in the chapter.

When it comes to the modelingprocess, different aspects
can be pointed out:

• identifying concepts and their semantics,
• determining high-level structure ruleflow, rulebase con-

texts,
• building rules capturing the knowledge,
• integrating the ruleset,
• analyzing the quality of the model.

A rule-based model representation is expressed by means of
a certain rule language.

While modeling rules, some other important factors have to
be taken into consideration. These include:

• rule applications and types, e.g. constraint handling, facts,
derivation, etc., and

• rule inference model, mainly the forward and backward
chaining case.

These issues can have an important influence on the rule
language.

A. MODELING LANGUAGES

Rule modeling is a classic problem in the field of AI (Arti-
ficial Intelligence). It is a question of knowledge engineering
(KE) and building rule-based expert systems that have strong
logical foundations. In this chapter, some fundamental logical
rule formats are considered, based upon the propositional or
predicate calculus. The formats are a basis for rule languages.
Rules can be practically written and processed in the logic
programming paradigm, e.g. in Prolog. Even though the lan-
guage uses a subset of first order predicate logic (restricted
to Horn clauses), it is easy to write meta-interpreters working
with languages of another order.

Within the AI, a number ofvisual knowledge representa-
tion methods for rules have been considered. These methods
include:

• decision tables, that help combining rules working in the
same context,

• decision trees, that support visualization of the decision
making process, and

KONRAD KUŁAKOWSKI ET. AL: USING UML STATE DIAGRAMS FOR VISUAL MODELING 191

• decision graphs and lists, a less common but powerful
method of control specification.

Two important factors for using these methods are:

1) design support – all of these methods help the designer
(knowledge engineer) develop the rule-based model in
a more rapid, and scalable manner, and

2) logical equivalence – all of these formally correspond to
rules on the logical level.

These methods are used to model rules in practical applica-
tions. They also influenced some classic software engineering
languages, e.g. UML.

A common approach to model rule-based systems is to use
UML, considered by some as a universal modeling language.
UML offers a visual or semi-visual method for different
aspects of information modeling. By using this, it is possible
to model some specific rule types. However, when it comes to
practical knowledge engineering, it has some major limitations
due to the different semantics of rules and the object-oriented
paradigm. In particular cases, some of these shortcomings can
be overcome by the use of OCL, which allows for constraint
specification for UML classes.

One area where UML or UML-related methods are more
useful is the conceptual modeling, which supports practical
rule authoring. UML class diagrams are suitable to capture
relations between concepts present in rule vocabularies. In
this context usage of SBVR from OMG seems to be very
interesting.

Since UML is a de facto standard information modeling
method in software engineering approaches and tools, it can
be treated as a low-level language on top of which a richer
semantics is provided. This is possible for the standardized
MOF and UML profiles formats. By building upon these,
a dedicated rule modeling language can be built, e.g. URML
or PRR.

An important community is built around the W3C and the
so-calledSemantic Web Initiative. The methods built on top of
XML, RDF and OWL allow also for rule modeling for both
web and general purposes. Rule interchange is possible using
the XML-based RIF format.

The rule-based model can be used as a stand-alone logical
core of a business application. However, in practice, this model
should be somehow integrated with other models, and compo-
nents of a heterogeneous application. Examples of integration
discussed in this chapter include integration with business
processes described with BPMN, as well as interfaces on the
Java platforms. A number of approaches to the integration
can be enumerated, with Model-View-Controller being a prime
example.

Finally, the multilayer aspect of the rule language should
be considered. A useful and expressive rule language should
provide:

• rich, but well-defined semantics,
• formally defined syntax with clear logical interpretation,
• scalable visual representation, which allows for the visu-

alization of many rules,

• machine readable encoding for model interchange and
integration.

Using this criteria, it is easier to analyze selected languages.

B. HEKATE APPROACH

Developing new effective rule methods is one of the main
goals of the HEKATE project [18]. It aims at providing
a complete rule modeling and implementation solution. Some
of the main concepts behind it are:

• providing an integrated design and implementation pro-
cess, thus

• closing the semantic gap, and
• automating the implementation, providing
• an executable solution, which includes
• an on-line formal analysis of the design, during the

design.

To fulfill the goal HeKatE uses methods and tools in the
areas of:

• knowledge representation, for visual design,
• knowledge translation, for automated implementation,
• knowledge analysis, for formal verification.

Currently, development within the project is focused on the:

• conceptual design method, ARD+ [19], which allows for
attribute (vocabulary) specification,

• logical design, XTT+ [20], for rule design using a hybrid
decision tables and tree based method.

For project progress see hekate.ia.agh.edu.pl
A principal idea in this approach is to model, represent,

and store the logic behind the software (sometimes referredto
as business logic) using advanced knowledge representation
methods taken from KE. The logic is then encoded with
the use of a declarative representation. The logic core would
be then embedded into a business application or embedded
control system. The remaining parts of the business or con-
trol applications, such as interfaces or presentation aspects,
would be developed with classic object-oriented or procedural
programming languages such as Java or C.

The work proposed in this paper aims at developing a UML-
based representation for rules describing the logical coreof an
application. Such a representation would allow for direct rule
modeling with standard UML tools.

IV. REPRESENTING BUSINESS RULES IN UML

Rules are widely recognized as a critical technology for
building various types of knowledge-based applications. Rules
are also important in information systems engineering, where
they constitute a natural way of expressing business appli-
cation logic. The classical form of a rule is a plain, textual
if-then-else statement defining a rule’s condition and rule’s
conclusions. On the other hand, there are a few propositions
of visual rules modeling, e.g. URML [3].

In response to the market gap for visual rules modeling and
taking into account the great popularity of UML as a general
purpose modeling language, we propose another UML-based
approach to visual rules modeling. In this approach a rule is

192 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

<<rule>>
External Constraint 1

driver : Driver

Each driver authorized to drive the car
 during a rental must have a valid driver’s licence

<<rule>>
Rental reservation acceptance 3

customer : Customer

If the customer requesting the rental has been blacklisted,
the rental must be refused.

Driver

drivingLicense : DrivingLicense

Customer

11..*

<<rule>>
LoyaltyIncentiveScheme1

customer : Customer

1

1

If customer has joined the loyality incentive scheme,
there was a year when he made at least 4 rentals

Fig. 1. Rules as classes

expressed as a class with a stereotyperule. Such a class has
its own state diagram, which is used for expressing the rule’s
condition, conclusion and action.

Presented solution does not deal with business vocabulary
modeling. It is assumed that all the business artifacts indis-
pensable to business rules formulation are given in form of
class diagrams. The precise definition of business vocabulary
might be provided in form of other modeling languages e.g.
SBVR.

A. INTERPRETABLE LANGUAGE

In the presented approach, UML is used for modeling
a system and creating schemes of the rules. Other important
parts of the model, such as events, guards conditions, actions
and conclusions, are written in aninterpretable language.
In the context of UML the natural choice of language for
expressing e.g. guard conditions is OCL. It has appropriate
expression power and proven syntax constructions suitablefor
expressing statements upon the UML abstracts. Since actions
are also important parts of some kinds of rules, there is still
a need for another language for actions modeling. OCL as
a constraint language does not seem to be the optimal choice
for this purpose. On the other hand, a situation in which there
are several different languages for modeling several different
aspects of the systems is not convenient. The optimal solution
should consists of UML and one interpretable language having
mechanisms allowing for the expression of all non-UML terms
like constraints and actions. Such a language should be easy
to use by rule architects, and it also needs to be understood
by the rule interpreter. Because people for whom the idea of
using UML and state diagrams appears attractive should not
be forced to use a certain implementation of a rule engine,
the question of an interpretable language to expressing non-
UML model elements remains open. Thus, however, the OCL
language seems to be useful in the context of specifying logical
statements upon the UML terms, in this article, it is treated
rather like one possible and well documented proposition, not
like a part of the final method’s specification.

B. RULE DIAGRAMS

The rule diagram (Figure 1) is a UML class diagram
containing the classes representing rules and some business
terms that are directly used by the rules.

Customer

rentals : Set

EURental

Driver

drivingLicense : DrivingLicense

DrivingLicense

isValid() : boolean

possess

1

1

Rental

startDate : Date
endDate : Date

authorized drivers
1

1..*

Branch

hasABranch

11..*

Car

carGroup : int

owns

10..*

authorize

authorized_drivers

1

authorisations

1 1..*

1

1

Reservation

startDate : Date
endDate : Date

10..*

0..*

1

rental

BlackList

1 blackList

0..*

badCustomers

 LoyalityIncentiveSchemeData

joinDate : Date

1

loyalitySchemeData
0..1

Date

currentYear() : void

year : int
month : int
day : int

Fig. 2. Business vocabulary diagram

The main role of the rule diagram is to show relationships
between rules and business terms. Attributes of the class
representing a rule should cover all of the business artifacts
indispensable for a condition evaluation, a conclusion drawing
or an action being performed. Every rule should have a textual
comment informing about its business source.

C. BUSINESS VOCABULARY DIAGRAMS

Rules express some logical statements about terms and facts
[2] that comes from the UML model. The set of all terms and
facts will be called thebusiness vocabulary. Thus, every UML
diagram containing elements ofbusiness vocabularywhich are
neitherrule diagramsnor rule definition diagramsassociated
with a rule will be called abusiness vocabulary diagram. The
most popular kind ofbusiness vocabulary diagramis a class
diagram (Figure 2).

D. RULE DEFINITION DIAGRAM

The definition of the rule has a form of a state diagram
associated with the class representing the rule. This diagram
will be called therule definition diagram. The rule can be fired
(can be applied) if, according to itsrule definition diagram,
it is able to change the state from a start state to a stop
state. If there are some actions defined between a start state
and a stop state, all of them have to be executed when the
rule is triggered. If it is not possible for the rule to leave
a start state, it means that the given rule is not active and
cannot be executed at the moment. Following the conceptual
rule classification [15], [3] we would like to define three
types of business rules: Integrity Business Rules, Derivation
Business Rules and Reactive Business Rules. The Reactive
Business Rules incorporates Production Business Rules and
ECA Business Rules [21].

The integrity rule, represented here as an integrity con-
straint, consists of a predicate function given producing
a boolean value on the output. A very popular language for
formulating constraints and expressing business knowledge in
UML models is OCL (Object Constraint Language). It allows
for precise formulation properties of relations between classes

KONRAD KUŁAKOWSKI ET. AL: USING UML STATE DIAGRAMS FOR VISUAL MODELING 193

 [self.driver.authorizations->size() > 0 implies self.driver.drivingLicense.isValid]

Fig. 3. Integrity business rule

<<conclusion>>

self.customer.rentals->select(startDate = Date.currentYear()).size() >= 4

 [not self.customer.loyalitySchemeData->isEmpty()]

Fig. 4. Derivation business rule

and objects. In fact, a guard condition may be formulated in
any language understood by a rule interpreter; however, for
the sake of examples’ clarity, the OCL language is preferred.
In the proposed approach the semantics of an integrity rule
is given by a simple start-stop diagram containing one guard
condition. Obviously, a condition of the integrity rule is met
if the rule object changes its state to stop. On figure 3 an
example of integrity rule is shown. The integrity constraint
expresses the fact that the driver’s driving license is valid if
it has at least one authorization. The source of this rule as
well as other presented examples comes from broadly known
in literature as the EU-Rent case study [17], [15], [3] .

Derivation business rules have conditions and conclusions.
Depending on the positive evaluation of the condition, a con-
clusion is drawn. In our approach, a condition is represented
by a guard expression, whilst the conclusion is the action
performed in the action state followed by a guard expres-
sion. The action state should have a stereotypeconclusion.
The action should have the form of a logical expression in
a language understood by a rules interpreter. The action’s
logical expression represents a new knowledge derived from
the existing facts (subjects of conditions) in the system. The
presented example (figure 4) shows derivation rule describing
the fact that if a customer has joined the loyalty incentive
scheme, he must have made four rentals within the year. The
same as previously the source of the rule is the EU-Rent case
study.

Reactive business rules may have conditions, triggering
events and actions. For the given rule, one condition or one
triggering event (at least one is obligatory) and one action
should be defined. In general, such a kind of rule allows for the
modeling of an event-condition-action behavioral pattern, in
which execution of the action is preceded by event triggering
and guard condition evaluation. The absence of a condition
is allowed only if a triggering event is defined, and inversely,
a triggering event is not required if only a condition is defined.
Thus, there are three possible subtypes of the reactive business
rules:

• reactive business rule with a non-empty event and a non-
empty condition

• reactive business rule with a non-empty event and an
empty condition

<<action>>

System.out.println(’Rental is refused’);

 [customer.blackList->size() > 0 or customer.rental->size() > 0]

Fig. 5. Reactive business rule

• reactive business rule with an empty event and a non-
empty condition

The first kind of rule is triggered by the event only if a guard
condition is true. The second one models the executing action
in response to the raised event, whilst the third kind of rule
models the action execution as a result of changes in the
system that make the guard condition true. The condition is
modeled as a guard expression; thus, it may have any boolean
form suitable for a rule interpreter (OCL is the preferred
language). The action state in therule definition diagramhas
a stereotypeaction. Whilst the first two kinds of reactive rules
have a semantics of ECA Rules, the third kind of the reactive
rules has a semantics borrowed from production rules i.e. an
action is executed as soon as the condition becomes true [21].
On figure 5 an example of the third kind of reactive business
rule is shown. According to the rule, if a customer is on a black
list or he has already a rental, the specified action is executed.
In this particular case the action writes the message informing
that the rental is (or will be) refused.

V. CONCLUSIONS

In this paper, the main assumptions of a new approach to
representing business rules in UML has been presented. This
approach allows for modeling business rules as UML state
diagrams. It makes modeling rules similar to modeling system
behavior, which may shorten the time required for modeling
the system. A rule is represented by a well-known concept of
a stereotyped class; thus, there is no need to define any new
UML artifacts except for stereotypes. Consequently, almost
every UML 2.0 compatible modeler might be used for rule
modeling. It is easy to find the business vocabulary since
it is explicitly shown in UML diagrams. With the help of
stereotyped rules, the well known statechart concepts, such as
action, guard and event, retain as much as possible from their
original meaning. E.g. since applying the rule is represented by
following the transitions of an state diagram, a guard concept
remains a kind of expression deciding whether we may apply
the rule, i.e. whether we may follow the transition.

Since some of a rule’s components are written in OCL or
other interpretable languages, rule modeling may seem to be
a little bit harder than using a graphical notation. On the other
hand, such languages are usually quite simple; e.g. in OCL
some more sophisticated constructions like nested collections
has been abandoned [22]. Thus, after getting a bit of practice
in the chosen language, working with rules written in UML
and state diagrams should not be a problem.

Regardless of the lack of a strictly defined language for
actions and guards expressions, some experiments in these
areas are being conducted. The aim of the authors is to propose

194 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

a completextUML solution [23], which would allow to execute
rule–based model on appropriate rule–based runtime engine
as well as provide model building guidelines to facilitate
modeling process. Since key role of UML statecharts in
existingxtUML solutions [24], [25] a statechart form of a rule
cannot be underestimated. A semi–automatic transition from
SBVRtextual form tobusiness vocabulary diagramand rules
diagramis also considered. UsingSBVRwould allow for easy
capturing business vocabulary and business rules, and theirs
validation and preliminary authorization. In the context of
MDA [26] such transition will correspond to transformation
a computation independent model(CIM) to platform indepen-
dent model (PIM). The next transition, i.e. fromPIM to PSM,
will be done by rule–based runtime engine.

The work presented here will be integrated within the
HeKatE approach briefly discussed in Sect. III-B. The basic
idea is to model a rule-based logical application core with the
visual representation presented here. The OCL expression can
be replaced by Prolog-based rules, since Prolog is the language
of choice for the HeKatE prototype implementation [27]. Since
HeKatE aims at designing applications using the Model-View-
Controller pattern, using an UML-based representation greatly
improves the possibility of integration with the UML-based
view design. Another area of intensive research is the formal
analysis of the rule-based model. It is hoped that HeKatE
verification methods could be extended to cover the UML-
based model.

AcknowledgementsThe paper is supported by the HeKatE
Project funded from 2007–2009 resources for science as
a research project.

REFERENCES

[1] S. Russell and N. P.,Artificial Intelligence: A Modern Approach.
Prentice-Hall, Englewood Cliffs, NJ, 1995.

[2] D. Hay and K. A. Healy, “Defining business rules what are they really?”
the Business Rules Group, Tech. Rep., 2000. [Online]. Available:
http://www.businessrulesgroup.org/first_paper/BRG-whatisBR_3ed.pdf

[3] S. Lukichev and G. Wagner, “Visual rules modeling,” inErshov
Memorial Conference, ser. Lecture Notes in Computer Science,
I. Virbitskaite and A. Voronkov, Eds., vol. 4378. Springer,
2006, pp. 467–473. [Online]. Available: http://dx.doi.org/10.1007/
978-3-540-70881-0_42

[4] ——, “UML-Based Rule Modeling with Fujaba,” 2006.
[Online]. Available: http://oxygen.informatik.tu-cottbus.de/i1papers/
LukichevWagnerFujabaDevDays2006.pdf

[5] G. Wagner, A. Giurca, and S. Lukichev, “Modeling Web Services
with URML,” in Proceedings of Workshop Semantics for Business
Process Management 2006, Budva, Montenegro (11th June 2006), 2006.
[Online]. Available: http://idefix.pms.ifi.lmu.de:8080/rewerse/index.html

[6] D. S. Appleton, “Business rules: the missing link,”Datamation, 15,
vol. 30, no. 16, Oct. 1984.

[7] R. Ross, “Entity modelling: Techniques and application,” Database
Research Group, Boston, MA, Tech. Rep., 1987.

[8] C. C. Fleming and B. von Halle,Handbook of Relational Database
Design. Reading: Addison-Wesley Professional, 1989.

[9] R. G. Ross,The Business Rule Book. Business Rule Solutions, 1994.
[10] S. Tabet, G. Wagner, S. Spreeuwenberg, P. D. Vincent, J.Gonzaques,

M. C. de Sainte, J. Pellant, J. Frank, and J. Durand, “OMG
production rule representation - context and current status,” in Rule
Languages for Interoperability. W3C, 2005. [Online]. Available:
http://www.w3.org/2004/12/rules-ws/paper/53

[11] H. Boley, “The ruleML family of web rule languages,” inPPSWR, ser.
Lecture Notes in Computer Science, J. J. Alferes, J. Bailey,W. May,
and U. Schwertel, Eds., vol. 4187. Springer, 2006, pp. 1–17.[Online].
Available: http://dx.doi.org/10.1007/11853107_1

[12] H. Boley and M. Kifer, “RIF basic logic dialect,” World Wide Web
Consortium, Working Draft WD-rif-bld-20071030, Oct. 2007.

[13] T. Halpin, “Verbalizing business rules: Part 1,” Apr. 03 2004.
[14] G. Wagner, “How to design a general rule markup language,”

Jun. 2002, invited talk at the Workshop XML Technologien
für das Semantic Web (XSW 2002), Berlin. [Online]. Available:
citeseer.ist.psu.edu/wagner02how.html

[15] G. Wagner, A. Giurca, and S. Lukichev, “A general markupframework
for integrity and derivation rules,” inPrinciples and Practices of
Semantic Web Reasoning, ser. Dagstuhl Seminar Proceedings, F. Bry,
F. Fages, M. Marchiori, and H.-J. Ohlbach, Eds., no. 05371.
Internationales Begegnungs und Forschungszentrum fuer Informatik
(IBFI), Schloss Dagstuhl, Germany, 2006. [Online]. Available:
http://fparreiras/papers/R2ML.pdf

[16] G. Wagner, G. Antoniou, S. Tabet, and H. Boley, “The abstract syntax
of ruleML - towards a general web rule language framework,” in Web
Intelligence. IEEE Computer Society, 2004, pp. 628–631. [Online].
Available: http://doi.ieeecomputersociety.org/10.1109/WI.2004.134

[17] D. Chapin, “Semantics of business vocabulary and business rules
(SBVR),” in Rule Languages for Interoperability. W3C, 2005.
[Online]. Available: http://www.w3.org/2004/12/rules-ws/paper/85

[18] G. J. Nalepa and I. Wojnicki, “A proposal of hybrid knowledge engineer-
ing and refinement approach,” inFLAIRS-20 : Proceedings of the 20th
International Florida Artificial Intelligence Research Society Conference
: Key West, Florida, May 7-9, 2007, D. C. Wilson, G. C. J. Sutcliffe, and
FLAIRS, Eds., Florida Artificial Intelligence Research Society. Menlo
Park, California: AAAI Press, may 2007, pp. 542–547.

[19] ——, “Towards formalization of ARD+ conceptual design and refine-
ment method,” inFLAIRS2008, 2008, submitted.

[20] ——, “Proposal of visual generalized rule programming model for
Prolog,” in 17th International conference on Applications of declara-
tive programming and knowledge management (INAP 2007) and 21st
Workshop on (Constraint) Logic Programming (WLP 2007) : Wurzburg,
Germany, October 4–6, 2007 : proceedings : Technical Report434,
D. Seipel and et al., Eds. Bayerische Julius-Maximilians-Universitat
Wurzburg. Institut für Informatik, september 2007, pp. 195–204.

[21] B. Berstel, P. Bonnard, F. Bry, M. Eckert, and P.-L. Patranjan,
“Reactive rules on the web,” inReasoning Web, ser. Lecture
Notes in Computer Science, G. Antoniou, U. Aßmann, C. Baroglio,
S. Decker, N. Henze, P.-L. Patranjan, and R. Tolksdorf, Eds.,
vol. 4636. Springer, 2007, pp. 183–239. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-74615-7_3

[22] J. Warmer and A. Kleppe,The Object Constraint Language: Precise
Modelling with UML, ser. Object Technology Series. Reading/MA:
Addison-Wesley, 1999.

[23] S. Flint and C. Boughton, “Executable/translatable UML and systems
engineering,” in Practical Approaches for Complex Systems (SETE
2003), 2003.

[24] M. Kostrzewa and K. Kułakowski, “A practical approach to the mod-
elling, visualising and executing of reactive systems,” inMIXed DESign
of integrated circuits and systems, 2006, pp. 705–710.

[25] S. Burmester, H. Giese, M. Hirsch, D. Schilling, and M. Tichy, “The
fujaba real-time tool suite: model-driven development of safety-critical,
real-time systems,” in27th International Conference on Software
Engineering (ICSE 2005), 15-21 May 2005, St. Louis, Missouri, USA,
G.-C. Roman, W. G. Griswold, and B. Nuseibeh, Eds. ACM, 2005,
pp. 670–671. [Online]. Available: http://doi.acm.org/10.1145/1062455.
1062601

[26] A. Kleppe, J. Warmer, and W. Bast,MDA Explained. The Model Driven
Architecture: Practice and Promise. Addison-Wesley, 2003.

[27] G. J. Nalepa and A. Ligęza, “Prolog-based analysis of tabular rule-based
systems with the xtt approach,” inFLAIRS 2006 : proceedings of the
nineteenth international Florida Artificial IntelligenceResearch Society
conference : [Melbourne Beach, Florida, May 11–13, 2006], G. C. J.
Sutcliffe and R. G. Goebel, Eds., Florida Artificial Intelligence Research
Society. FLAIRS. - Menlo Park: AAAI Press, 2006, pp. 426–431.

